

ALMA MATER STUDIORUM Università di Bologna

Evolution of Non-Terrestrial Networks towards 6G Systems

Towards 6G - Drivers and State of Play

11th FOKUS FUSECO Forum Berlin, September 15, 2023

Dr. Alessandro Guidotti, CNIT

TN/NTN convergence

Independent TN/NTN optimisation

TN optimisation minimum impact to support NTN

Source: GSOA, White Paper, "Satellite Communications and their role in enabling 6G," October 2022.

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

3GPP NTN in Rel. 17

- NTN-based GEO/LEO with implicit HAPS/ATG compatibility
- Main characteristics
 - transparent payload architecture
 - coverage type
 - Earth-fixed
 - Quasi-Earth-fixed
 - Earth-moving
 - FR1: S-band and L-band
 - handheld terminals with GNSS capabilities
 - FDD
 - Earth-fixed tracking
- Massive normative work to adapt the NR system to the NTN characteristics

Source: Mohamed El Jaafari, "3GPP NTN standardization: status and prospect," ASMS/SPSC conference, September 2022.

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to $\mathbf{6}\mathbf{G}$

797

3GPP NTN beyond Rel. 17

6G Study to support the NTN component

other enhancements

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

6G features to support the NTN component

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

Radio part (satellite and UE) specifications in S-/L-band

3GPP NTN Rel. 18-19

- NR radio protocols enhancements
 - support FR2 and mobile/nomadic VSAT
 - transparent payloads
 - co-existence analysis on-going
 (adjacent channel)
 - network verification of the GNSS coordinates determined by the UE
 - optimise mobility procedures in idle/connected modes
- NB-IoT/eMTC radio protocols enhancements
 - optimise mobility procedures
 - improve the support of small constellations providing **discontinuous** service over a given area

	ser	vice	e ov	er c	ı giv	en d	arec	C					
n512, n511, n510										n512			Region 1, Region 3, Region 2 countries exc
										n510	n511		US market and countri the same assignme
18	19	20	21	22	23	24	25	n258	27	n261 n257	29		3GPP TDD bands for TN

Source: ESA EAGER Project, White Paper, "Architectures, services, and technologies towards 6G Non-Terrestrial Networks," February 2023.

Source: EC HORIZON-JU-SNS-2022 Project 5G-STARDUST, D3.1 "System Requirements Analysis and Specifications," July 2023.

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

2022	2023	2024	2025			
Re	lease 18	Release 19				
G system features to su . Access with disc. co . backhaul (legacy tra with variable latenc	pport: overage insport network, e.g., DVB) y and bandwidth					
G-NR support of network verified UE coverage and mobilit	location y enhancements	5G-NR support ofregenerative payloadsother enhancements				
G NB-IoT/eMTC enha mobility MAC disc. coverage	ncements	4G NB-IoT/eMTC • store and forward • other enhancements				
Radio part (satellite a GHz	nd UE) specifications above 10					
Region 1, Regio Region 2 countries US market and cou the same assig	n 3, and except US untries with nments					

NR-NTN

- coverage enhancements (DL and possibly UL)
- NTN/TN mobility enhancement in connected mode (e.g., CHO)
- support of HD mode RedCAP UE (Reduce Capabilities) in FR1
- support of **regenerative** payloads (i.e., with ISL)
- support of UE with GNSS
 independent operation for UL time and frequency synchronization in NTN based access (idle/connected modes)
- lot-NTN
 - regenerative payload = Store and Forward (i.e., eNB + ePC network elements)

6G will target a fully unified T-NT infrastructure based on multi-dimensional multilayer architecture

 No distinction between TN and NTN nodes: they are all nodes of the same infrastructure, to be jointly optimised and exploited

ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

Enabling Technologies

Architecture and system design

Multi-layered constellation from GEO to drones, Innovative LEO and vLEO orbits, optical inter and intra node-links design, cell-free MU-MIMO, traffic-driven coverage

Networking, edge computing and communications

Softwarization, virtualization, and orchestration of network resources, functional split, advanced IP, routing in the sky, resource management, integrated edge communication and computing

Flexible and integrated waveforms

Low PAPR and low OOBE solutions, Non-orthogonal techniques to increase the connection density, novel RA procedures to allow multiple transmissions per beam, multipoint transmission from the sky, distributed beamforming

Dynamic Spectrum Access and new spectrum

Coordinated and uncoordinated sharing among different access technologies, inter and intra layer, higher frequency bands, Q/V and above

Positioning

Network based positioning

AI/ML

Network and system orchestration, Radio Resource Management, Network traffic forecasting, Physical layer management, Channel estimation

Antennas and components

Active antennas for link budget and flexible coverage, Refracting RIS for indoor coverage, regenerative payload, high-parallel energy efficient HW, Optical devices

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to $\mathbf{6}\mathbf{G}$

6G NTN key elements

Source: A. Guidotti et al., "Role and Evolution of Non-Terrestrial Networks towards 6G systems," submitted to IEEE Access, 2023

A. Guidotti - The evolution of NTN from 5G to 5G-Advanced and the path to 6G

ALMA MATER STUDIORUM Università di Bologna

Conclusions

- The integration of an NTN component into 5G is a reality since Rel. 17
- However, both **evolutionary and revolutionary technologies** are needed towards a true fully integrated NT-T system infrastructure for 5G-Advanced and 6G communication systems
- NTN will play a pivotal role in future fully unified systems, leading to a ML-MO-MB 6G NTN

For future NTN systems, we need to make a further technology leap now!

Current funded projects on NTN...

pant N.	Participant o	organisation name			Acronym	Country
rdinator)	ALMA MAT	ER STUDIORUM- U	NIVERSTA DI	BOLOGNA	https://WBQ.eag	erproject.eu
	THALES AL	ENIA SPACE FRAN	JT SES	_	TASF	FR
	MARTEL GN	ивн		in	https://www.link	edin_com/company/eager-project/
	THALES DIS	S AIS DEUTS, HLAN	JD GMBH		httpsTHtwHer.co	mPEagersatcom
	GREENERW	'AVE			GRN	FR
	THALES SIX	GTS FRANCE SAS			TH-SIX	FR
	ERICSSON A	AB			ERIS	SE
	THALES AL	ENIA SPACE UK LT	Ď		TASUK	UK
				_		FR
CC	CNIC			ONS DE	****	<u>ardust.eu</u>
	SIND	1	214KD021		****	ES Jup com/company/5g-stardust/
		ZENI		MFAH	Commission	DE
	ORANGE SA	1			ORA	FR
A. Guidotti -	THE STECHC	The second second	ed and the path to 60		SES	LU
	OTALCOM	I ED ANCE				ГЪ

ALMA MATER STUDIORUM Università di Bologna

Dr. Alessandro Guidotti, CNIT

Research Unit at the Department of Electrical, Electronic, and Information Engineering «Guglielmo Marconi»

a.guidotti@unibo.it

www.unibo.it