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EXECUTIVE SUMMARY 

In this deliverable, 5G-STARDUST investigates aspects related to radio resource management 
(RRM), on-board processing (OBP) and radio access network (RAN) softwarisation. This is 
the intermediate version based on the work carried out within WP4in the first half of the project 
and will be further extended and concluded in the final release (D4.7) planned for the next year 
(2025). 

The first part of the document is devoted to introducing a new paradigm for the RAN design 
and operation. The result is an open RAN (O-RAN) architecture that disaggregates network 
components, offering the possibility of integrating hardware and software from multiple 
vendors. This aspect allows to overcome the limited flexibility and reconfigurability of 
monolithic units. Within the O-RAN context, the components are connected via open interfaces 
and can be optimized by the RAN intelligent controller (RIC). Hence, O-RAN natively embeds 
intelligence in the RAN, which can provide an enormous value for RRM. Remarkably, O-RAN 
is specified on top of the 3GPP. Hence, it offers a framework to apply data-driven methods to 
manage the 3GPP-defined RAN.  

To understand how artificial intelligence (AI) can be used for efficient RRM in the architecture 
defined in the Deliverable D3.2 [1], the document initially describes the machine learning (ML) 
framework offered by O-RAN. Especial emphasis is given to network functions that host the 
training and the ML algorithm as well as the control loops defined in O-RAN. A detailed 
discussion is devoted to the application of supervised, unsupervised and reinforcement 
learning.  

To identify the class of RRM tasks that can be tackled through AI algorithms, an exhaustive 
analysis has been conducted across several sections of the document. The problems of 
interest can be divided into: 

• Traffic prediction and offloading;  

• Traffic anomaly detection; 

• Power and bandwidth allocation;  

• Radio resource allocation;  

• Traffic Steering. 

In alignment with the O-RAN specification, this deliverable classifies the problems according 
to the timescale. The entity that supports large time scale RAN optimization (>1s) is the non-
real-time (non-RT) RIC. In this case, the software application that is designed to run on the 
non-RT RIC is referred to as rApp. For smaller timescales (between 10ms and 1 s), the RAN 
optimization relies on the near-real-time (near-RT) RIC. In this context, the xApps are 
applications that are designed to run on the near-RT RIC.  

It is important to remark that the O-RAN architecture has been originally conceived from the 
TN perspective. To enable the non-terrestrial network (NTN) functionalities, it shall be noted 
that some modifications are required. As a first iteration, this deliverable analyses the gNB 
radio protocol enhancements and inter block connections that will be needed to integrate NTN 
in the O-RAN architecture.  
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To assess the potential gains of data-driven RRM in the context of NTN, an in-depth analysis 
is needed. Essentially, to evaluate the impact the specific characteristics of satellite-based 
communications may have on the performance results. For instance, the extensive coverage 
area and the short visibility windows, which are inherent to satellite systems. In this regard, an 
innovative solution has been conceived to enhance predictive models. The proposed solution 
leverages on the Kolmogorov-Arnold networks (KANs) to forecast satellite traffic. Numerical 
results obtained with the satellite network data set reveal that lower error metrics have been 
achieved with lower computational resources, when compared to the traditional solutions. 
Focusing on large timescales, the result is relevant for the residential broadband scenario, 
where the traffic load is low in night hours. Then, on the basis that users can access the 
network either through TN or NTN links, AI-based traffic predictions can be used to decide 
when NTN comes into play to provide coverage. For instance, when the traffic forecast is too 
low. When a given condition is met, TN cells or carriers could be switched off, so that all the 
traffic is diverted to the satellite. The immediate consequence is that the RAN consumption of 
the terrestrial segment can be reduced.  

Drawing the attention to small timescales, the deliverable provides guidelines to tackle AI-
based RRM in the context of user-centric beamforming. Indeed, the problem can be formulated 
to either maximize or minimize the objective function. The cost function to be optimized include, 
system capacity, per-user throughput and user fairness, to mention a few. The next iteration 
of this deliverable, from the near-RT RIC side, will assess the performance of an AI-based user 
scheduling for user-centric beamforming in NTN.  

Finally, the document has conducted a high-level feasibility study on the development of 
regenerative payloads with OBP capabilities. Drivers and challenges are discussed. The 
functionalities and the network elements that should be hosted by the satellite in different 
network architectures are defined. This outcome is especially relevant from the RRM 
standpoint, as it would enable the possibility to place the RIC on-board of the satellite. This 
approach aims to reduce latency and optimize bandwidth, by reducing the number of 
interactions with on-ground equipment.  
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1 INTRODUCTION 

This deliverable D4.4 reports the outcomes of Task 4.3 “Data-enhanced Radio Intelligent 
Controller Design”, Task 4.4 “Onboard Processing and Communication Capabilities” and Task 
4.5 “RAN Softwarisation”. The activities undertaken within the scope of these tasks, pursue 
the objective to:  

• Define, design and analyse data-driven management system components;  

• Study, design, and analyse a 5G-based satellite network, implementing onboard 
processing and storage capabilities;  

• Define, design, and analyse a full softwarisation of the end-to-end network architecture.  

Towards this end, 5G-STARDUST leverages on: 

• The architecture defined in WP3 in [1, 2];  

• The datasets described in WP4 and WP5 in [3] and [4], respectively; 

• The proof-of-concept (PoC) functional architecture defined in [5].  

The data sets have been divided into two parts, i.e., cellular and satellite network data sets. 
The inputs provided by the satellite operator are related to broadband services for fixed clients 
(residential broadband) and for mobile communications (maritime communications). The 
inputs of the cellular data set are related to the rural and the railway environments.  

Data-driven RRM, which is one of the pillars of the project, is a remarkable feature that seeks 
to boost network performance by learning trends and patterns. For instance, by optimizing how 
the RAN nodes operate over time. To accomplish this goal, the ML framework defined by the 
O-RAN architecture becomes a powerful tool. More precisely, thanks to the support of RIC-
hosted x/rApps, which become instrumental to develop AI engines for RRM tasks. 
Nonetheless, the specific characteristics of NTN, prevent the existing solutions conceived for 
TN from being reused. The large coverage area and the short visibility period of RAN nodes, 
which are inherent to satellite systems, call for new solutions. Across the following sections, 
RRM enhancements are proposed for NTN:  

• Section 2 defines the components and the interfaces of the O-RAN architecture. 

• Section 3 provides a view of how the different ML algorithms can be deployed and 
realized in O-RAN architecture and how to map AI and ML functionalities into the O-RAN 
control loops.  

• Section 4 seeks to apply the framework offered by the O-RAN architecture in an 
integrated TN and NTN architecture. The section identifies the RRM problems that could 
be handled by the non-RT RIC and the near-RT RIC. With regard to the design of the 
algorithms, an innovative AI-based solution is proposed to solve the problems that involve 
a forecasting task. Numerical results are provided to show that the proposed design 
clearly outperforms traditional methods in terms of error metrics with less computational 
resources. The analysis of the application scope highlights that the algorithm described 
in this section could be used to offload the traffic from TN to NTN. In the context of user-
centric beamforming, guidelines are provided to optimize the user scheduling.  
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• Section 5 describes the general stack modifications that are needed to the PoC 
implementation. This includes the implementation of the open fronthaul interface (OFH), 
new functionalities to enable monitoring and control and gNB radio protocol 
enhancements to support NTN.  

• Section 6 analyses the OBP capabilities of regenerative payloads. For different network 
architectures, the functions and the network elements that are allocated on-board of the 
satellite are defined.  

• Finally, Section 7 concludes this document. 
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2 O-RAN ARCHITECTURE AND INTERFACES  

This section defines the components and the interfaces of the O-RAN architecture.  

O-RAN architecture is a virtualized, software-driven, and open radio access network 
architecture that enables the integration of hardware and software components from multiple 
vendors. It is designed to be modular, scalable, and flexible, with standardized interfaces that 
enable interoperability between different RAN components. In this section, we summarize the 
O-RAN architecture and interfaces. 

The O-RAN architecture consists of multiple functional components that can be separated and 
managed independently. Some of the key components in O-RAN are radio unit (RU), 
distributed unit (DU), central unit (CU), RIC, and service management and orchestration 
(SMO).  Figure 1 shows these components and the connection among them. 
 

 

Figure 1. O-RAN Architecture 

2.1 O-RAN COMPONENTS 

• Service management and orchestration (SMO): the key capabilities of the SMO that 
provide RAN support in O-RAN are the fault, configuration, accounting, performance, 
security (FCAPS) interfaces to O-RAN functions, non-real-time (non-RT) RIC for RAN 
optimization, orchestrator and cloud management. The SMO performs these services 
through A1/O1/O2 interfaces.  



5G-STARDUST | D4.4: Preliminary Report on AI-based Radio Resource 
Management, RAN Softwarisation and Onboard Processing (V1.0F) | Public 

 

 Page 17 of 61 © 2023-2025 5G-STARDUST 

• Non-RT RIC and rApps: this logical function resides within the SMO and provides the A1 
interface to the Near-RT RIC. Its main goal is to support large timescale RAN optimization 
(seconds or minutes), including policy computation, ML model management (e.g., 
training), and other radio resource management functions within this timescale. The 
rApps are software applications designed to run on the Non-RT RIC.  

• Near-RT RIC and xApps: near-real-time (near-RT) RIC is a logical function that enables 
near-RT optimization and control and data monitoring of O-RAN central unit (O-CU) and 
O-RAN distributed unit (O-DU) nodes in near-RT timescales (between 10 ms and 1 s). 
To this end, near-RT RIC control is steered by the policies and assisted by models 
computed/trained by the non-RT RIC. The xApps are applications designed to run on the 
near-RT RIC. 

• O-CU - control plane (O-CU-CP): a logical node hosting the radio resource control (RRC) 
and the control plane part of the packet data convergence control (PDCP) protocol 

• O-CU - user plane (O-CU-DP): a logical node hosting the user plane part of the PDCP 
protocol and the service data adaptation protocol (SDAP).  

• O-DU: a logical node hosting radio link control (RLC), medium access control (MAC), 
high-physical (PHY) layers based on the 7-2x fronthaul split defined by O-RAN 

• O-RAN RU (O-RU): a logical node hosting low-PHY layer and radio frequency (RF) 
processing based on the 7-2x fronthaul split defined by O-RAN.  

• O-eNB: an eNB or ng-eNB that supports E2 interface. 

• Cloud computing platform: O-Cloud comprising a collection of physical infrastructure 
nodes that meet O-RAN requirements to host the relevant O-RAN functions (such as 
Near-RT RIC, O-CU-CP, O-CU-UP, and O-DU), the supporting software components 
(such as operating system, virtual machine monitor, container runtime, etc.) and the 
appropriate management and orchestration functions. 

2.2 O-RAN INTERFACES 

• A1 Interface between Non-RT RIC and Near-RT RIC to enable policy-driven guidance of 
Near-RT RIC applications/functions, and support AI/ML workflow. 

• O1 Interface connecting the SMO to the Near-RT RIC, one or more O-CU-CPs, one or 
more O-CU-UPs, and one or more O-DUs. 

• O2 Interface between the SMO and the O-Cloud 

• E2 Interface connecting the Near-RT RIC and one or more O-CU-CPs, one or more O-
CU-UPs, one or more O-DUs, and one or more O-eNBs. 

• Open fronthaul control user synchronization (CUS) plane interface between O-RU and 
O-DU 

• Open fronthaul M-Plane Interface between O-RU and O-DU as well as in between O-RU 
and SMO 
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3 ML AND ORAN  

This section provides a view of how the different ML algorithms can be deployed and realized 
in O-RAN architecture and how to map AI/ML functionalities into O-RAN control loops. 

3.1 ML ALGORITHMS IN O-RAN ARCHITECTURE 

One of the key aspects of the O-RAN is to natively embed intelligence into the RAN. To this 
end, AI/ML plays a crucial role in the process. Figure 2 below shows a simplified ML framework 
and a general procedure for the ML framework operation within O-RAN. 

 

Figure 2 ML Framework in O-RAN – General Procedure 

To start with, data is collected through O-RAN interfaces (like O1, E2, or A1) from all of the O-
RAN entities, including the O-RU, O-DU, O-CU, near- and non-RT RIC, but also can come 
from a UE, core network (CN) or application functions (AF). Then the data is used by ML 
training and inference functions: 

• ML training host (MTH), is a network function hosting the online and offline training of the 
model (typically non-RT RIC is used for this purpose, but also near-RT RIC in some 
scenarios).  

• ML inference host (MIH), is also a network function hosting the ML model during inference 
mode including model execution and online learning (non- or near-RT RIC can be utilized 
here).  

The inference host provides output to an actor (i.e., an entity hosting an ML-assisted solution. 
In this case, it can be O-DU, O-CU, non/near-RT RIC). The actor utilizes the results of ML 
inference for the purpose of RAN performance optimization. Based on the decision, an action 
is taken on a subject (i.e., an entity or function configured, controlled, or informed by the 
action). After the action is taken, subjects provide feedback serving as data sources for the 
next iteration.  
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Based on the output of the ML model, an ML-assisted solution (i.e., a solution that addresses 
a specific use case using ML algorithms during operation) informs the actor to take the 
necessary actions toward the subject. These could include configuration management (CM) 
changes over O1, policy management over A1, or control actions or policies over E2, 
depending on the location of the ML inference host and actor. 

The location of the ML model components, i.e., ML training and the ML inference for a use 
case mostly depends on the trade-off between communication delay and computational 
capabilities of near-RT RIC. Moreover, the availability and quantity of data, available through 
different O-RAN interfaces should also be taken into account. A detailed discussion for the 
three types of ML algorithms can be found below.  

3.1.1 Supervised learning  

Input data is called training data and has a known label or result. Supervised learning is a ML 
task that aims to learn a mapping function from the input to the output, given a labelled data 
set. These algorithms include: 

• Regression: linear regression, logistic regression; 

• Instance-based Algorithms: k-nearest neighbour; 

• Decision Tree Algorithms: classification and regression tree; 

• Support Vector Machines; 

• Bayesian Algorithms: naive Bayes; 

• Ensemble Algorithms: extreme gradient boosting (XGBoost), bagging, random forest. 

Supervised learning can be further grouped into regression and classification problems. 
Classification is about predicting a label whereas regression is about predicting a quantity. 

 
 
 
 
 
 

Figure 3 Supervised learning model training and actor locations 

In supervised learning (see Figure 3), Non-RT RIC is part of the SMO and thus is part of the 
management layer. ML training host is part of the Non-RT RIC, the ML inference host can be 
part of Non-RT RIC or Near-RT RIC.  
 

3.1.2 Unsupervised learning 

Input data is not labelled and does not have a known result. Unsupervised learning is a ML 
task that aims to learn a function to describe a hidden structure from unlabelled data. Some 
examples of unsupervised learning are K-means clustering and principal component analysis 
(PCA). 

ML Training ML Inference Non-RT RIC 

Near-RT RIC 

A1 

ML Training 

ML Inference 

Non-RT RIC 

Near-RT RIC 

A1 
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Figure 4 Unsupervised learning model training and actor locations 

In unsupervised learning (see Figure 4), ML training host is part of the Non-RT RIC, the ML 
inference host can be part of Non-RT RIC or Near-RT RIC. 

3.1.3 Reinforcement learning  

A goal-oriented learning based on interaction with environment. In reinforcement learning (RL), 
the agent aims to optimize a long-term objective by interacting with the environment based on 
a trial-and-error process. There are several RL algorithms, e.g.: 

• Q-learning 

• Multi-armed bandit learning 

• Deep RL 

 
 
 
 
 
 
 

Figure 5 Reinforcement learning model training and actor locations 

In reinforcement learning (see  
Figure 5), ML training host and ML inference host shall be co-located as part of Non-RT RIC 

or Near-RT RIC. 

3.2 MAPPING AI/ML FUNCTIONALITIES INTO O-RAN CONTROL 
LOOPS  

There are three types of control loops defined in O-RAN. ML assisted solutions fall into the 
three control loops.  Time scale of O-RAN control loops depend on what is being controlled, 
e.g., system parameters, RRM algorithm parameters. For example, if O-RAN control loop 
adapts the parameters of RRM algorithms, its time scale is slower than that of the RRM 
algorithm. 

Loop 1 deals with per transmission time interval (TTI) msec level scheduling and operates at 
a time scale of the TTI or above. Loop 2 operates in the near RT RIC operating within the 
range of 10-500 msec and above (resource optimization). Loop 3 operates in the non-RT RIC 
at greater than 500 msec (policies, orchestration). It is not expected that these loops are 
hierarchical but can instead run in parallel.  
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Figure 6 Control loops in O-RAN 

Figure 6 shows the three control loops in O-RAN architecture. AI/ML related functionalities can 
be mapped into the three loops. The location of the ML training host and the ML inference host 
for a use case depends on the computation complexity, on the availability and the quantity of 
data to be exchanged, on the response time requirements and on the type of ML model. For 
example, online ML model for configuring RRM algorithms operating at the TTI time scale 
could run in O-DU, while the configuration of system parameters such as beamforming 
configurations requiring a large amount of data with no response time constraints can be 
performed in the Non-RT RIC and SMO layer where intensive computation means can be 
made available.  

3.3 AI FLOWS IN O-RAN ARCHITECTURE 

In the first phase of O-RAN, ML model training will be considered in the non-RT RIC and ML 
model inference will be considered in loops 2 and 3. For loop2, the ML inference is typically 
running in near-RT RIC. For Loop 1, the ML model inference is typically running in an O-DU. 
ML workflow on loop 1 is for further specification. While ML model implementation in O-RU 
could be envisaged, it is presently not supported in O-RAN. 

The section provides an example of ML model lifecycle implementation within the O-RAN 
architecture. Figure 7 below provides a high-level overview of the typical steps of AI/ML-based 
use case applications within O-RAN architecture considering supervised 
learning/unsupervised learning ML models. 
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Figure 7: ML Model Lifecycle Example  

The steps for reinforcement model could vary with respect to ML training host and the related 
interaction flows. Nonetheless, the typical steps include: 

1. ML modeler uses a designer environment that creates the initial ML model. 

2. The initial model is sent to training hosts for training. 

3. The appropriate data sets are collected from the near-RT RIC, O-CU and O-DU to a data 
lake and passed to the ML training hosts. 

4. The trained model/sub models are uploaded to the ML designer catalog. The final ML 
model is composed.  

5. The ML model is published to non-RT RIC along with the associated license and metadata. 

6. Non-RT RIC deploys the ML application to the near-RT RIC, O-DU and O-RU using the 
O1 interface. Policies are also set using the A1 interface.  

7. Performance measurement data is sent back to ML training hosts from near-RT RIC, O-
DU and O-RU for retraining.  
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4 AI-BASED RADIO RESOURCE MANAGEMENT  

This section seeks to apply the framework described in Sections 2 and 3 to the reference 
architecture defined in [1, 2]. The proposed solution integrates a terrestrial 5G system and a 
5G NTN. The NTN component is based on a low Earth orbit (LEO) constellation that can be 
complemented by geostationary Earth orbit (GEO) satellite. Depending on the OBP capabilities 
and the functional split, the space segment may host different radio and network functions. 
Remarkably, user equipment (UE) can connect directly to base stations through TN and NTN 
links or indirectly using integrated access backhauling (IAB).  
 
This section identifies the RRM problems that can be handled by both the non-RT RIC and the 
near-RT RIC. Regarding the design of the algorithms, an innovative solution is proposed to 
solve the problems that involve a forecasting task. The specific case of traffic prediction has 
been investigated with real satellite data for large timescales. For smaller timescales, 
guidelines are provided to tackle the the user scheduling RRM algorithm in the context of user-
centric beamforming.  

4.1 NON-REAL TIME RIC  

4.1.1 Non-real time RIC description 

The non-RT RIC is a fundamental component of the Open RAN architecture, designed for 
managing RAN operations with control loops exceeding one second. Unlike the near-RT RIC, 
it handles operations on longer timescales and supports third-party applications, known as 
rApps, which aid in optimizing and managing RAN functions. These applications enhance the 
RAN by providing services such as policy guidance, configuration management, and data 
analytics. The non-RT RIC is part of the SMO framework within the O-RAN architecture. It is 
connected to other network elements in the architecture by means of A1, O1 and O2 interfaces. 
On the one hand, A1 interface connects the non-RT RIC with near-RT RICs to exchange 
policies and control data. On the other hand, O1 and O2 interfaces are used for operations, 
administration and management functions. Non-RT RIC enables data management and 
exposure services. It performs the data management and exposure to services and can cover 
all the aspects of the AI/ML development, including the collection of data, the training of the AI 
models and the subsequent validation of them, and, finally, their deployment and execution. 
The primary responsibilities of non-RT RIC include: 

POLICY MANAGEMENT 

• Definition and distribution: The non-RT RIC defines policies and guidelines for RAN 
behaviour. These policies are then distributed to the near-RT RIC and other RAN 
elements. 

• Optimization: It continually refines policies based on long-term data analysis to optimize 
network performance and resource utilization. 

MACHINE LEARNING AND ANALYTICS 

• Data collection and analysis: It collects vast amounts of data from the RAN elements and 
uses this data for advanced analytics. 
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• Model training: The non-RT RIC trains ML models that can predict and adapt to network 
conditions. These models can be then deployed to the near-RT RIC to assist in real-time 
decision-making. 

RAN OPTIMIZATION 

• Performance optimization: By analyzing historical data and trends, the non-RT RIC can 
identify performance bottlenecks and suggest optimizations. 

• Load Balancing and resource management: It helps in strategic planning for load 
balancing and resource allocation based on long-term usage patterns. 

4.1.2 Radio resource management problems to be handled 

TRAFFIC OFFLOADING 

It is known that RAN consumes most of the energy in cellular networks and that the traffic load 
in some regions is usually low at night hours, e.g., rural areas or technopoles. Under these 
premises, NTN nodes could be used to offload TN traffic during nighttime. Consequently, some 
rural TN cells or carriers could be switched off, which is an effective mechanism to save energy 
when the load is low. Then, on the basis that that users can access the network either through 
TN or NTN links, AI-based traffic offloading techniques could be used to decide when NTN 
comes into play to provide coverage. For instance, when the traffic forecast is too low. This is 
aligned with the use case 1.2 described in [6]. The scenario is represented in Figure 8. 

Interestingly, the complementary scenario (i.e., traffic offload from terrestrial networks of non-
time sensitive data at peak hours) is another application, which is already considered as a use 
case by 3GPP for NTN. In such a case, the traffic should be offloaded during peak hours when 
the traffic forecast is higher than a given threshold.  

It is important to remark that traffic forecasting is the main enabler to realize AI-based traffic 
offloading techniques. Based on the timescale of the predictions, configuration changes of TN 
cells could be triggered by non-RT RIC rApps. Switch on/off decisions will be provided over 
the O1 and E2 interfaces.  

 

Figure 8: Residential broadband scenario 

BANDWIDTH ALLOCATION 
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Data-driven bandwidth allocation for the aggregated traffic is a RRM task that can be handled 
by the non-RT RIC. The objective is not to decide the number of physical resource blocks 
(PRBs) that shall be allocated to UEs. By contrast, the aim is to decide the number of PRBs 
that are need among multiple NTN beams to serve all the users. IN such a case, non-RT RIC 
rApps can pre-allocate PRBs on a large timescale based on the traffic demand. Analogously 
to the traffic offloading problem, traffic forecasting is the core task. Optimizing the bandwidth 
allocation is essential to make an efficient use of the satellite resources.  

4.1.3 AI-techniques for non-real time RRM 

This section describes an AI/ML prediction engine that is based on the application of KANs to 
time-series forecasting.  

4.1.3.1 Kolmogorov-Arnold Networks (KANs) for Time Series Analysis 

Inspired by the Kolmogorov-Arnold representation theorem, KANs replace traditional linear 
weights with spline-parametrized univariate functions, allowing them to learn activation 
patterns dynamically. In this section it is demonstrated that KANs outperforms conventional 
multi-layer perceptrons (MLPs) in a real-world satellite traffic forecasting task, providing more 
accurate results with considerably fewer number of learnable parameters. We also provide an 
ablation study of KAN-specific parameters impact on performance. The proposed approach 
opens new avenues for adaptive forecasting models, emphasizing the potential of KANs as a 
powerful tool in predictive analytics, which is relevant for non-RT RRM. 

Time series forecasting plays a key role in a wide range of fields, driving critical decision-
making processes in finance, economics, medicine, meteorology, and biology, among others, 
reflecting the wide applicability and its significance across many domains. It involves predicting 
future values based on the previously observed data points. With this goal in mind, 
understanding the dynamics of time-dependent phenomena is essential and requires unveiling 
the patterns, trends and dependencies hidden with the historical data. While conventional 
approaches have been traditionally centred on parametric models grounded in domain-specific 
knowledge, such as autoregressive (AR), exponential smoothing, or structural time series 
models, contemporary ML techniques offered a pathway to discern temporal patterns solely 
from data-driven insights. 

Non-ML methods traditionally tackle the time series forecasting problem and often rely on 
statistical methods to predict future values based on previously observed data. One of the most 
well-known techniques is the Autoregressive integrated moving average (ARIMA) model, 
which combines auto-regression, integration, and moving averages to forecast data. The 
authors in [7] detailed this approach, providing a comprehensive methodology foundational for 
subsequent statistical forecasting methods. Extensions of ARIMA, like seasonal ARIMA 
(SARIMA), adapt the model to handle seasonality in data series, particularly useful in fields 
like retail and climatology [8]. Exponential Smoothing techniques constitute another popular 
set of traditional (non-ML-based) forecasting methods. They are characterized by their 
simplicity and effectiveness in handling data with trends and seasonality. An exponent of this 
family of techniques is the so-called Holt-Winters seasonal technique, which adjusts the model 
parameters in response to changes in trend and seasonality within the time series data [9, 10]. 
These models have been widely used for their efficiency, interpretability and implementation. 

More recently, ML models have significantly impacted the forecasting landscape by handling 
large datasets and capturing complex nonlinear relationships that traditional methods cannot. 
In recent years, deep learning (DL)-based forecasting models have gained popularity, 
motivated by the notable achievements in many fields. For instance, neural networks have 
been extensively studied due to their flexibility and adaptability. Simple MLPs were among the 
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first to be applied to forecasting problems, demonstrating significant potential in non-linear data 
modelling [11]. 

Built upon these light models, more complex architectures have progressively expanded the 
capabilities of neural networks in time series forecasting. Typical examples are recurrent 
neural network architectures such as long short-term memory (LSTM) networks and gated 
recurrent units (GRUs), which are designed to maintain information in memory for long periods 
without the risk of vanishing gradients – a common issue in traditional recurrent networks [12]. 
On a related note, convolutional neural networks (CNNs), which are fundamentally inspired by 
MLPs, are also extensively employed in time series forecasting. These architectures are 
particularly efficient at processing temporal sequences due to their strong spatial pattern 
recognition capabilities. The combination of CNNs with LSTMs has resulted in models that 
efficiently process both spatial and temporal dependencies, enhancing forecasting accuracy 
[13]. These models have started to outperform established benchmarks in complex forecasting 
tasks, motivating a significant shift towards more complex network structures. Unfortunately, 
since the majority of the models mentioned above are inspired by MLP architecture, they tend 
to have poor scaling law, i.e., the number of parameters in MLPs networks do not scale linear 
with the number of layers, and often lack interpretability. 

A recent study in reference [14], which was recently proposed, introduces KANs, a novel neural 
network architecture designed to potentially replace traditional multilayer perceptrons. KANs 
represent a disruptive paradigm shift, and as a potential game changer have recently attracted 
the interest of the AI community worldwide. They are inspired by the Kolmogorov-Arnold 
representation theorem, [15, 16]. Unlike MLPs, which are inspired by the universal 
approximation theorem, KANs take advantage of this representation theorem to generate a 
different architecture. They innovate by replacing linear weights with spline-based univariate 
functions along the edges of the network, which are structured as learnable activation 
functions. This design not only enhances the accuracy and interpretability of the networks, but 
also enables them to achieve comparable or superior results with smaller network sizes across 
various tasks, such as data fitting and solving partial differential equations. While KANs show 
promise in improving the efficiency and interpretability of neural network architectures, the 
study acknowledges the necessity for further research into their robustness when applied to 
diverse datasets and their compatibility with other deep learning architectures. These areas 
are crucial for understanding the full potential and limitations of KANs. 

The content described in this section is based on prospective study presented in [17], which 
investigates the application of KANs to time series forecasting. To the best of authors’ 
knowledge, not previously explored in the literature. The aim of [17] is to evaluate the 
practicality of KANs in real-world scenarios, analysing their efficiency in terms of the number 
of trainable parameters and discussing how the additional degrees of freedom might affect 
forecasting performance. Herein, it is assessed the performance using real-world satellite 
traffic data. This exploration seeks to further validate KANs as a versatile tool in advanced 
neural network design for time series forecasting, although more comprehensive studies are 
required to optimize their use across broader applications. Finally, we note that due to the early 
stage of KANs, it is fair to compare it as a potential alternative to MLPs, but further investigation 
is needed to develop more complex solutions that can compete with advanced architectures 
such as LSTMs, GRUs and CNNs. 

First, this section presents the problem statement, providing fundamental background on 
Kolmogorov-Arnold representation theorem and KANs. Next, the experimental setup 
description is presented, which serves as basis to analyse the performance of KANs with real-
world datasets.  

PROBLEM STATEMENT 
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The traffic forecasting problem is formulated as a time series at time 𝑡 represented by 𝑦𝑡. The 

objective is to predict the future values of the series. 

𝒚𝑡0:𝑇 = [𝑦𝑡0
, 𝑦𝑡0+1, . . . , 𝑦𝑡0+𝑇]                                                                              (1) 

based solely on its historical values. 

𝒙𝑡0−𝑐:𝑡0−1 = [𝑥𝑡0−𝑐 , . . . , 𝑥𝑡0−2, 𝑥𝑡0−1]                                                                   (2) 

where 𝑡0 denotes the starting point from which future values 𝑦𝑡 , 𝑡 = 𝑡0, . . . , 𝑇 are to be predicted. 

We differentiate the historical time range [𝑡0 − 𝑐, 𝑡0 − 1] and the forecast range [𝑡0, 𝑇] as the 

context and prediction lengths, respectively. This approach focuses on generating point 
forecasts for each time step in the prediction length, aiming to achieve accurate and reliable 
forecasts. Figure 9 shows an exemplary time series. 

 

Figure 9: Example of normalized satellite traffic series data with the conditioning and prediction lengths 
denoted in blue, and red, respectively. 

Kolmogorov-Arnold representation background 

Contrary to MLPs, which are based on universal approximation theorem, KANs rely on the 
Kolmogorov-Arnold representation theorem, also known as the Kolmogorov-Arnold 
superposition theorem. A fundamental result in the theory of dynamical systems and ergodic 
theory. It was independently formulated by Andrey Kolmogorov and Vladimir Arnold in the mid-
20th century. 

The theorem states that any multivariate continuous function 𝑓, which depends on 𝐱 =
[𝑥1, 𝑥2, … , 𝑥𝑛], on a bounded domain, can be represented as the finite composition of simpler 

continuous functions, involving only one variable. Formally, a real, smooth, and continuous 
multivariate function 𝑓(𝐱): [0,1]𝑛 → ℝ can be represented by the finite superposition of 

univariate functions: 
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𝑓(𝒙) = ∑ 𝛷𝑖

2𝑛+1

𝑖=1

(∑ 𝜙𝑖,𝑗

𝑛

𝑗=1

(𝑥𝑗)),                                                                              (3) 

where 𝛷𝑖: ℝ → ℝ and 𝜙𝑖,𝑗: [0,1] → ℝ denote the so-called outer and inner functions, 

respectively. One might initially perceive this development as highly advantageous for ML. The 
task of learning a high-dimensional function simplifies to learning a polynomial number of one-
dimensional functions. Nevertheless, these 1-dimensional functions can exhibit non-smooth 
characteristics, rendering them potentially unlearnable in practical contexts. As a result of this 
problematic behavior, the Kolmogorov-Arnold representation theorem has been traditionally 
disregarded in machine learning circles, recognized as theoretically solid, but ineffective in 
practice. Unexpectedly, the theoretical result in [14] has recently emerged as a potential game 
changer, paving the way for new network architectures, inspired by the Kolmogorov-Arnold 
theorem. 

Kolmogorov-Arnold network background 

The authors in [14] mention that equation 𝑓(𝒙) =

∑ 𝛷𝑖
2𝑛+1
𝑖=1 (∑ 𝜙𝑖,𝑗

𝑛
𝑗=1 (𝑥𝑗)),                                                                              (3) has two layers of non-

linearities, with 2𝑛 + 1 terms in the middle layer. Thus, we only need to find the proper functions 

inner univariate functions 𝜙𝑖,𝑗 and 𝛷𝑖 that approximate the function. The one-dimensional inner 

functions 𝜙𝑖,𝑗 can be approximated using B-splines. A spline is a smooth curve defined by a 

set of control points or knots. Splines are often used to interpolate or approximate data points 
in a smooth and continuous manner. A spline is defined by the order 𝑘 (𝑘 = 3 is a common 

value), which refers to the degree of the polynomial functions used to interpolate or 
approximate the curve between control points. The number of intervals, denoted by 𝐺, refers 

to the number of segments or subintervals between adjacent control points. In spline 
interpolation, the data points are connected by these segments to form a smooth curve (of 𝐺 +
1 grid points). Although splines other than B-splines could also be considered, this is the 

approach proposed in [14]. Equation 𝑓(𝒙) =

∑ 𝛷𝑖
2𝑛+1
𝑖=1 (∑ 𝜙𝑖,𝑗

𝑛
𝑗=1 (𝑥𝑗)),                                                                              (3) can be represented as 

a 2-layer (or analogous 2-depth) network, with activation functions placed at the edges (instead 
of at the nodes) and nodes performing a simple summation. Such two-layer network is too 
simplistic to effectively approximate any arbitrary function with smooth splines. For this reason, 
reference [14] extends the ideas discussed above by proposing a generalized architecture with 
wider and deeper KANs. 

A KAN layer is defined by a matrix 𝚽 composed by univariate functions {𝜙𝑖,𝑗(⋅)} with 𝑖 =

1, . . . , 𝑁𝑖𝑛 and 𝑗 = 1, . . . , 𝑁𝑜𝑢𝑡, where 𝑁𝑖𝑛 and 𝑁𝑜𝑢𝑡 denote the number of inputs and the number 

of outputs, respectively, and 𝜙𝑖,𝑗 are the trainable spline functions described above. Note 

according to the previous definition, the Kolmogorov-Arnold representation theorem can be 
expressed as a two-layer KAN. The inner functions constitute a KAN layer with 𝑁𝑖𝑛 = 𝑛 and 

𝑁𝑜𝑢𝑡 = 2𝑛 + 1, while the external functions constitute another KAN layer with 𝑁𝑖𝑛 = 2𝑛 + 1 and 

𝑁𝑜𝑢𝑡 = 1. 

Let us define the shape of a KAN by [𝑛1, . . . , 𝑛𝐿+1], where 𝐿 denotes the number of layers of 
the KAN. It is worth noting the Kolmogorov-Arnold theorem is defined by a KAN of shape 
[𝑛, 2𝑛 + 1,1]. A generic deeper KAN can be expressed by the composition 𝐿 layers: 
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𝒚 = KAN(𝒙) = (𝜱𝐿 ∘ 𝜱𝐿−1 ∘ … ∘ 𝜱1)𝒙.                                                          (4) 

Notice that all the operations are differentiable. Consequently, KANs can be trained with 
backpropagation. Despite their elegant mathematical foundation, KANs are simply 
combinations of splines and MLPs, which effectively exploit each other’s strengths while 
mitigating their respective weaknesses. Splines stand out for their accuracy on low-
dimensional functions and allow transition between various resolutions. Nevertheless, they 
suffer from a major dimensionality problem due to their inability to effectively exploit 
compositional structures. In contrast, MLPs experience a lower dimensionality problem, due 
to their ability to learn features, but exhibit lower accuracy than splines in low dimensions due 
to their inability to optimize univariate functions effectively. KANs have by their construction 2 
levels of degrees of freedom. Consequently, KANs possess the capability not only to acquire 
features, owing to their external resemblance to MLPs, but also to optimize these acquired 
features with a high degree of accuracy, facilitated by their internal resemblance to splines. To 
learn features accurately, KANs can capture compositional structure (external degrees of 
freedom), but also effectively approximate univariate functions (internal degrees of freedom 
with the splines). It should be noted that by increasing the number of layers 𝐿 or the dimension 

of the grid 𝐺, we are increasing the number of parameters and, consequently, the complexity 
of the network. This approach constitutes an alternative to traditional DL models, which are 
currently relying on MLP architectures and motivates the extension of this work. 

KAN time series forecasting network 

The traffic forecasting problem is framed as a supervised learning framework consisting of a 
training dataset with input-output {𝐱𝑡0−𝑐:𝑡0−1, 𝐲𝑡0:𝑇} in the condition and prediction lengths. The 

aim is to find 𝑓 that approximates 𝐲𝑡0:𝑇, i.e., 𝐲𝑡0:𝑇 ≈ 𝑓(𝐱𝑡0−𝑐:𝑡0−1). For ease of notation, the 

framework is described as a two-layer (2-depth) KAN [𝑁𝑖 , 𝑛, 𝑁𝑜] (note that to comply with the 
original paper notation, the input layer is not accounted as a layer per se). The output and input 
layers will be comprised of 𝑁𝑜, and 𝑁𝑖  nodes corresponding to the total amount of time steps 

in 𝒚𝑡0:𝑇 = [𝑦𝑡0
, 𝑦𝑡0+1, . . . , 𝑦𝑡0+𝑇]                                                                              (1)and𝒙𝑡0−𝑐:𝑡0−1 =

[𝑥𝑡0−𝑐 , . . . , 𝑥𝑡0−2, 𝑥𝑡0−1]                                                                   (2), while the 

transformation/hidden layer of 𝑛 nodes. The inner functions constitute a KAN layer with 𝑁𝑖𝑛 =
𝑁𝑖  and 𝑁𝑜𝑢𝑡 = 𝑛, while the external functions constitute another KAN layer with 𝑁𝑖𝑛 = 𝑛 and 

𝑁𝑜𝑢𝑡 = 𝑁𝑜. Our KAN can be expressed by the composition of 2 layers: 

𝒚 = KAN(𝒙) = (𝜱2 ∘ 𝜱1)𝒙.                                                                                             (5) 

where the output functions 𝛷2 generates the 𝑁𝑜 outputs values corresponding to 𝒚𝑡0:𝑇 =

[𝑦𝑡0
, 𝑦𝑡0+1, . . . , 𝑦𝑡0+𝑇]                                                                              (1) by doing the transformation 

from the previous layers. The proposed network can be used to forecast future traffic data in 
the prediction length, based solely on the context length. Figure 10 shows a generic 
representation for any arbitrary number of layers 𝐿. 
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Figure 10: Example of the flow of information in the KAN network architecture for our traffic forecasting 
task. Learnable activations are represented inside a square box.  

EXPERIMENTAL SETUP 

The data set has been generated according to [3, 4]. Hence, the inputs are obtained from a 
satellite operator (SO), as a result of processing real information from a GEO satellite 
communication system, which provisions broadband services. The dataset is a long time series 
capturing aggregated traffic data. To preserve privacy, anonymous clients have been defined 
with more than 500 connected users, and the traffic has been normalized. The measurements 
are monthly long, and the time granularity is 1 hour. 

The traffic has been extracted per satellite beam in Megabits per second (Mbps). Although the 
data has been collected using a GEO satellite communication system, it is expected that user 
needs could be used to address LEO systems, as well. It is worth emphasizing that the data 
collected can be used for AI-driven predictive analysis, to forecast traffic conditions, which is 
essential to avoid congestion and to make efficient use of satellite resources. Endowing the 
network with intelligence will be beneficial to meet the different demands of satellite 
applications. 
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Figure 11: Satellite traffic over three different beams wit forecasted values over beam 1 using a 4-
depth KAN and a 4-depth MLP. 

 

Figure 12: Satellite traffic over three different beams wit forecasted values over beam 2 using a 4-
depth KAN and a 4-depth MLP. 
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Figure 13: Satellite traffic over three different beams wit forecasted values over beam 3 using a 4-
depth KAN and a 4-depth MLP. 

SIMULATION RESULTS 

This section investigates the forecasting performance of different KAN and MLP architectures 
for predicting satellite traffic over the six beam areas. Concretely, we have a context length of 
168 hours (one week) and a prediction length of 24 hours (one day). This translates to 𝑇 = 24, 
𝑐 = 168, where 𝑦𝑡0+𝑇 = 192 in 𝒚𝑡0:𝑇 =

[𝑦𝑡0
, 𝑦𝑡0+1, . . . , 𝑦𝑡0+𝑇]                                                                              (1) and𝒙𝑡0−𝑐:𝑡0−1 =

[𝑥𝑡0−𝑐 , . . . , 𝑥𝑡0−2, 𝑥𝑡0−1]                                                                   (2). The focus is on evaluating the 

efficacy of KAN models compared to traditional MLPs. We designed our experiments to 
compare models with similar depths but varying architectures to analyze their impact on 
forecasting accuracy and parameter efficiency. Table 1 summarizes the parameters selected 
for this evaluation. We have data for the six beams over one month. We use two weeks + 1 
day for training and one week + 1 day for testing for all beams that were not seen by the 
network. We train all the networks with 500 epochs and Adam optimizer with a learning rate of 
0.001. The selected loss function minimizes the mean absolute error (MAE) of the values 

around the prediction length. 

Table 1: Model configurations for satellite traffic forecasting 

Model  Configuration Time horizon (h) Spline 
details 

Activations 

MLP (3-depth) 
[168, 300, 300, 

300, 24] 
Context/Prediction: 

168/24 
N/A ReLU (fixed) 

MLP (4-depth) 
[168, 300, 300, 
300, 300, 24] 

Context/Prediction: 
168/24 

N/A ReLU (fixed) 
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KAN (3-depth) [168, 40, 40, 24] 
Context/Prediction: 

168/24 

Type: B-
spline, k = 3, 

G = 5 

Learnable 

KAN (4-depth) 
[168, 40, 40, 40, 

24] 
Context/Prediction: 

168/24 

Type: B-
spline, k = 3, 

G = 5 

Learnable 

Performance analysis for real traffic 

We analyze the forecasting performance in the prediction length. Figure 11,  

Figure 12 and Figure 13 depict the real traffic value used as input (in green) to the networks, 
the expected output prediction length (in blue) and the values predicted values using a KAN 
(in red) and MLP (in purple) of depth 4 both – see Table 1 for details on model configuration. 
In general, the results show that the predictions obtained using KANs better approximates the 
real traffic values than the predictions obtained using traditional MLPs. This is particularly 
evident in Figure 11. Here, KAN accurately matches rapid changes in traffic volume, which the 
MLP models sometimes moderately over/under-predicted, as the last part of the forecast 
shows. This capability suggests that KANs are better suited to adapt to sudden shifts in traffic 
conditions, a critical aspect of effective traffic management. 

Additionally, the responsiveness of KANs is particularly noticeable in  

Figure 12 during fast changing traffic conditions. KAN shows a rapid adjustment to its forecast 
that is closely aligned with the actual traffic pattern. This is particularly noticeable in the last 6 
hours of the prediction length where MLP exhibits a lag failing to capture these immediate 
fluctuations, which shows its worse performance to capture dynamic traffic variations. Further 
analysis is shown in Figure 13, where traffic conditions are more variable and intense, 
demonstrated the robustness of KAN in maintaining high performance despite the complexity 
and higher volume. This robustness suggests that KANs can manage different scales and 
intensities of traffic data more effectively than MLPs, making them more reliable for deployment 
in varied traffic scenarios. 

To further quantify the performance and advantages of using KANs for the satellite traffic 
forecasting task we show Table 2. It shows a detailed comparison of MLPs and KANs different 
architectures used for evaluation over all the beams. The table displays the mean squared 
error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and the number of trainable parameters for each model. Analysing 
the error metrics, it becomes clear that KANs outperform MLPs, where the KAN (4-depth) is 
the best in performance. Its lower values in MSE and RMSE indicates its better ability to predict 
traffic volumes with lower deviation. Similarly, its lower values in MAE and MAPE suggests 
that KANs not only provides more accurate predictions but also maintains consistency across 
different traffic volumes, which is crucial for practical traffic forecasting scenarios. 

Furthermore, the parameter count reveals a significant difference in model complexity. KAN 
models are notably more parameter-efficient, with KAN (4-depth) utilizing only 109k 
parameters compared to 329k parameters for MLP (4-depth) or 238k for MLP (3-depth). This 
reduced complexity suggests that KANs can achieve higher or comparable forecasting 
accuracy with simpler and potentially faster models. Such efficiency is especially valuable 
in scenarios where computational resources are limited or where rapid model deployment is 
required. The results also show that with an augmentation of 16k parameters in KAN, the 
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performance can be significantly improved, contrary to MLPs which an increment of 91k 
parameters does not showcase a significant improvement. 

From a technical perspective, KANs leverage a theoretical foundation that provides an intrinsic 
advantage in modelling complex, non-linear patterns typical in traffic systems. This capability 
likely contributes to their flexibility and accuracy in traffic forecasting. The consistency in 
performance across diverse conditions also suggests that KANs have strong generalization 
capabilities, which is essential for models used in geographically varied locations under 
different traffic conditions. Moreover, besides obtaining lower error rates, our results also 
suggest that KANs can do so with considerably smaller number of parameters than traditional 
MLP networks. 

Table 2:Results summary 

Model  MSE (× 𝟏𝟎−𝟑) RMSE (× 𝟏𝟎−𝟐) MAE (× 𝟏𝟎−𝟐) MAPE Parameters 

MLP (3-depth) 6.34 7.96 5.41 0.64 238k 

MLP (4-depth) 6.12 7.82 5.55 1.05 329k 

KAN (3-depth) 5.99 7.73 5.51 0.62 93k 

KAN (4-depth) 5.08 7.12 5.06 0.52 109k 

 

Prediction of resources to serve the traffic  

In 5G NR, the data rate can be computed as follows [18]: 

data rate (in Mbps) = 10−6 ⋅ 𝑣𝐿𝑎𝑦𝑒𝑟𝑠 ⋅ 𝑄𝑚 ⋅ 𝑓 ⋅ 𝑅 ⋅
𝑁𝑃𝑅𝐵

𝜇 ⋅ 12

𝑇𝑠
𝜇 (1 − 𝑂𝐻) 

where 𝑣𝐿𝑎𝑦𝑒𝑟𝑠 is the maximum number of supported layers (for simplicity, here we assume 

equal to one), 𝑄𝑚 denotes the modulation order, 𝑓 denotes the so-called scaling factor, 𝜇 is 

the numerology (as defined in [19]), 𝑅 denotes the code rate, 𝑇𝑠
𝜇
 is the average OFDM symbol 

duration in a subframe 𝑇𝑠
𝜇 = 10−3

(14 ∙ 2𝜇)⁄  (Note that normal cyclic prefix is assumed), 𝑁𝑃𝑅𝐵
𝜇

 

denotes the number of PRBs, 𝑂𝐻 is the overhead factor. This last parameter, the 𝑂𝐻 factor 

can take different values depending on the frequency range.  

For the residential broadband dataset provided in [3, 4], the average signal-to-interference-
plus-noise ratio (SINR) at the beam centre and at the edge of the coverage are 11.13 and 9.52 
dB, respectively. In order to guarantee a BLER=0.1 at the edge of the coverage, the next 
values for the aforementioned parameters have been considered: 𝑄𝑚 = 6, 𝑓 = 1, 𝑅=466/1024, 

𝑂𝐻 = 0.14 (FR1). Then, the number of requested PRBs to serve the traffic can be expressed 

as follows:  

𝑁𝑃𝑅𝐵
𝜇 =

1024 ⋅ data rate (in Mbps)

2796 ⋅ 12 ⋅ 14 ⋅ 0.86 ⋅ 10−3 =  3.22619 ⋅ data rate (in Mbps) 

Based on the aforementioned formula, the average requested PRBs are forecasted with KANs 
and MLPs for the beams 36, 37, 38 and 39, respectively, of the residential broadband dataset 
are shown in the following figures. 



5G-STARDUST | D4.4: Preliminary Report on AI-based Radio Resource 
Management, RAN Softwarisation and Onboard Processing (V1.0F) | Public 

 

 Page 35 of 61 © 2023-2025 5G-STARDUST 

 

Figure 14: Average PRB forecasts for the beam 36. 

 

Figure 15: Average PRB forecasts for beam 37. 
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Figure 16: PRB forecasts for beam 38. 

 

Figure 17: PRB demands for beam 39 (historical and predicted). 

Table 3 summarizes the results of PRB forecasting, for the KAN and MLP, for different depths 
(3-depth and 4-depth), evaluating their performance across several key metrics: MSE, RMSE, 
MAE, MAPE, and the number of parameters. The analysis reveals that the 4-depth KAN model 
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significantly outperforms all other models, achieving the lowest MSE (26.79), RMSE (4.81), 
MAE (3.67), and MAPE (0.52) with only 109k parameters. 

Comparatively, the 4-depth MLP model, while improving slightly over its 3-depth counterpart, 
still lags behind with higher error metrics and substantially more parameters (329k). This 
indicates that the KAN architecture is not only more accurate but also more parameter-efficient 
than the MLP, suggesting a better generalization capability and potentially faster inference 
times. Additionally, increasing the depth from 3 to 4 layers generally enhances the performance 
for both types of models, but the improvement is notably more pronounced in the KAN models. 
For instance, the KAN model's MAPE decreases from 0.62 to 0.52 when increasing from 3 to 
4 depths, while the MLP model's MAPE counterintuitively increases from 0.64 to 1.05, 
highlighting potential overfitting issues with deeper MLP structures. 
 Furthermore, the efficiency of the 4-depth KAN model in terms of parameter usage has 
significant implications for Open-RAN environments. Open-RAN emphasizes interoperability 
and flexibility by using open interfaces and modular components, which often operate under 
constrained computational resources. The reduced parameter count in the KAN model (109k 
compared to MLP's 329k) translates to lower memory usage and faster processing times. This 
efficiency can lead to reduced hardware costs and energy consumption, which are critical 
factors in deploying and scaling Open-RAN solutions. Consequently, the KAN model's superior 
performance and efficiency support the goals of Open-RAN, promoting more scalable, cost-
effective, and sustainable network deployments. 

Table 3. PRB prediction resource summary  

Model  MSE  RMSE  MAE  MAPE Parameters 

MLP (3-depth) 33.41 5.25 3.92 0.64 238k 

MLP (4-depth) 32.26 5.22 4.03 1.05 329k 

KAN (3-depth) 31.61 5.19 4 0.62 93k 

KAN (4-depth) 26.79 4.81 3.67 0.52 109k 

 

KANs parameter-specific analysis 

We provide an insightful analysis of how different configurations of nodes and grid sizes affect 
the performance of KANs, particularly in the context of traffic forecasting. For this analysis, we 
designed 3 KANs (2-depth) [168, 𝑛, 24] with 𝑛 ∈ {5,10,20} and varying grids 𝐺 ∈ {5,10,20} for a 

𝑘 = 3 order B-spline. These results are shown during training time. 

Figure 18 shows a clear trend, where increasing the number of nodes generally results in lower 
loss values. This indicates that higher node counts are more effective at capturing the complex 
patterns in traffic data, thus improving the performance. For instance, configurations with 𝑛 =
20 demonstrate significantly lower losses across all grid sizes compared to those with fewer 

nodes. 

Similarly, the grid size within the splines of KANs has a notable impact on model 
performance. Larger grid sizes, when used with a significant number of nodes (𝑛 ∈ {10,20}), 
consistently result in better performance. However, when the number of nodes is low (𝑛 = 5) 

the extra complexity of the grid size shows the opposite effect. When having a significant 
number of nodes larger grids likely provide a more detailed basis for the spline functions, 
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allowing the model to accommodate better variations in the data, which is crucial for capturing 
complex temporal traffic patterns. 

 

Figure 18: Ablation comparison of KAN-specific parameters. 

The best performance is observed in configurations that combine a high node count with a 
large grid size, such as the 𝑛 = 20, and 𝐺 = 20 setup. This combination likely offers the highest 
degree of flexibility and learning capacity, making it particularly effective for modelling the 
intricate dependencies found in traffic data. However, this superior performance comes at the 
cost of potentially higher computational demands and longer training times, as more trainable 
parameters are included. 

These findings imply that while increasing nodes and grid sizes can significantly enhance the 
performance of KANs, these benefits must be weighed against the increased computational 
requirements. For practical applications, particularly in real-time traffic management where 
timely responses are critical, it is essential to strike a balance. An effective approach could 
involve starting with moderate settings and gradually adjusting the nodes and grid sizes based 
on performance assessments and computational constraints. Besides, we want to highlight 
that for this study continual learning was not assessed, a possibility mentioned in the original 
paper [14]. 

Finally, it is worth remarking that KAN are still in its infancy. KANs have been presented 
recently (just 2 months ago prior to the submission of this deliverable). With its original 
implementation for the same number of parameters computational complexity seems to be 
higher. Nevertheless, due to the learnable activation functions at the nodes, the same 
performance of MLPs can be obtained with a lower number of parameters. Furthermore, 
incremental learning can be considered to reduce the complexity [14]. Adaptive grid search 
training enables reduced computational complexity. Besides, efficient implementations are 
currently in the scope of many research group in AI worldwide. Recent results in [20] propose 
a new architecture for implementing KAN achieving 20x faster computation. 

 



5G-STARDUST | D4.4: Preliminary Report on AI-based Radio Resource 
Management, RAN Softwarisation and Onboard Processing (V1.0F) | Public 

 

 Page 39 of 61 © 2023-2025 5G-STARDUST 

CONCLUSION 

In this section, we have performed an analysis of KANs and MLPs for satellite traffic 
forecasting. The results highlighted several benefits of KANs, including superior forecasting 
performance and greater parameter efficiency. In our analysis, we showed that KANs 
consistently outperformed MLPs in terms of lower error metrics and were able to achieve better 
results with lower computational resources. Additionally, we explored specific KAN parameters 
impact on performance. This study highlights the importance of optimizing node counts and 
grid sizes to enhance model performance. Given their effectiveness and efficiency, KANs 
appear to be a reasonable alternative to traditional MLPs in traffic management. 

4.2 NEAR-REAL TIME CONTROLLER  

4.2.1 Near-real time RIC description 

The Near-RT RIC is deployed at the edge of the network to operate control-loops over the CUs 
and DUs in the RAN, as well as over O-RAN compliant eNBs. Usually, the near-RT RIC 
controls multiple RAN nodes, so its closed-loop control function is associated with the UEs of 
several cells. It hosts the termination of the O1, A1, and E2 interfaces, the xApps, and the 
components required to manage and execute the xApps, [21].The xApp is a plug-and-play 
application deployed inside the RIC that support custom logic. The xApps receive key 
performance indicators (KPIs) data from the RAN at all different layers, i.e., user, cell, or slice, 
and computes and applies control policies. As described on [22], the xApps are defined by the 
software image and by a descriptor, that includes information on parameters needed to 
manage the xApp. Near-RT RIC shall consist of multiple xApps and a set of platform functions 
that are commonly used to support the specific functions hosted by xApps. 

 

Figure 19: Near-RT RIC Internal Architecture. 

An overview of the architecture of the O-RAN standardized near-RT RIC is provided in Figure 
19.  
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The architecture includes:  

• Internal messaging infrastructure: it offers a low-latency message delivery service 
among near-RT RIC internal endpoints. It is required to support the following 
functionalities: (i) registration messages, enabling endpoints to register themselves with 
the messaging infrastructure; (ii) discovery messages, facilitating the initial discovery and 
registration of endpoints by the messaging infrastructure; and (iii) deletion messages, 
allowing for the removal of endpoints that are no longer in use. Additionally, this 
infrastructure provides APIs for sending and receiving messages from xApps. These APIs 
can operate based on either point-to-point communications or publish/subscribe 
mechanisms. 

• Conflict mitigation: in the context of near-RT RIC, conflict mitigation involves addressing 
conflicting interactions between different xApps. Typically, an application will modify one 
or more parameters to optimize a specific metric. Conflict mitigation is necessary because 
the objectives of xApps may be configured in ways that lead to conflicting actions. The 
control target of radio resource management can include elements such as a cell, a UE, 
or a bearer, among others. The control contents of radio resource management 
encompass access control, bearer control, handover control, QoS control, resource 
assignment, and more. The control time span refers to the valid duration of control as 
expected by the control request. Conflicts in control can be categorized as follows: (i) 
Direct conflicts, which are observable directly by the conflict mitigation process; and (ii) 
Indirect conflicts, which are not directly observable but may be inferred through 
dependencies among the parameters and resources targeted by the xApps. Conflict 
mitigation may involve anticipating potential conflicts and implementing measures to 
mitigate them. 

• Subscription manager: the subscription management functionality oversees 
subscriptions from xApps to E2 Nodes and enforces the authorization of policies that 
control xApp access to messages. Additionally, it enables the merging of identical 
subscriptions from different xApps into a single subscription directed toward an E2 Node. 

• Security: to prevent malicious xApps from leaking sensitive RAN data or from affecting 
the RAN performance. The details of this component are still left for further studies;   

• Network Information Based (NIB) Database and Shared Data Layer API: the RAN 
NIB contains information about the E2 nodes, while the UE-NIB includes the identification 
and entries of the UEs. The shared data layer (SDL) is utilized by xApps to subscribe to 
database notification services and to read, write, and modify information stored in the 
database. UE-NIB, R-NIB, and other use case-specific information may be accessed 
using SDL services. 

• xApp management: this service features automated lifecycle management of xApps, 
encompassing onboarding, deployment, termination, and the tracing and logging of 
FCAPS. 

• AI/ML support: The AI/ML data pipeline in near-RT RIC facilitates data ingestion and 
preparation for xApps. The input to this pipeline may include E2 node data collected via 
the E2 interface, enrichment information from the A1 interface, information from 
applications, and data retrieved from the Near-RT RIC database through the messaging 
infrastructure. The output of the AI/ML data pipeline may be supplied to the AI/ML training 
capability in near-RT RIC. The AI/ML training in near-RT RIC enables the training of 
xApps within the system, offering generic and use case-independent capabilities to 
AI/ML-based applications, potentially benefiting multiple use cases. 
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4.2.2 Radio resource management problems to be handled 

Previous works in the near-real time RIC literature show that AI techniques can be effectively 
implemented to tackle several RRM tasks. While the models can be trained in non-RT, at the 
non-real time RIC, they can be forwarded to the near-real time RIC for inference. To the best 
of our knowledge, there are no previous works evaluating AI techniques for RRM in the near-
real time RIC in NTNs. Thus, this section provides an overview of such literature from the TN 
perspective. 

LOAD PREDICTION 

In order to ensure that the radio resource allocation can cope with upcoming traffic requests, 
while also minimizing the number of unutilized resources, the radio resource allocation should 
be performed taking into account historical traffic data, e.g., time series of the cell load. For 
this reason, load prediction techniques can be implemented to extract the forecasted load in 
a cell, or in the network, based on historical statistics. Such predictions can be inferred within 
the near-real time RIC and incorporated in the radio resource allocation strategy, resulting in 
a potentially more optimal channel allocation, power allocation, network slicing, etc. In 
particular, [23] assessed the load prediction performance of 3 techniques, namely the linear 
regression, the Recurrent Neural Network (RNN) AI model, and the long-short term memory 
(LSTM) RNN. The work considers a network of gNBs with several mobile users of different 
time, each generating traffic of various size, with each device being characterized by a mean 
handover ratio based on the time of the day and the type of device (e.g., IoT device, cell 
phone). The models were trained to forecast the data load in an upcoming time slot based on 
the average data rate in the last 2 time slots, and the percentage of change in data rate 
between the last time slot and the second, third, and fourth to last time slots. After training, 
the LSTM and the RNN models scored comparably in the load prediction task, achieving a 
MAPE of 0.544 and 0.560, respectively, while the linear regression model scored a MAPE of 
0.615. The authors highlighted that LSTM resulted being more successful in predicting steady 
loads, while RRM achieved better performance in the prediction of load peaks. An LSTM 
model was also trained in [24] to predict the cell load within the following 15 minutes based 
on historical cell load data with 15 minutes resolution. The optimal time window for the input 

time series was empirically observed to be 1 day, scoring an MSE of 1.1 ∙ 10−3Gbps2. The 
authors in [25] also chose an LSTM model to predict the traffic in terms of downlink PRBs 
utilization and average user-perceived IP throughput, forecasting such metrics in the following 
hour for each gNB in the network based on a time series of 12 hours. The predictions, which 
are obtained with an accuracy of 92.64%, are then used to split the congested cells, e.g., by 
turning on femtocells. Load prediction has been carried out to provide aid to network slicing, 
too. [26] analysed the performance of LSTM, a Sequence To Sequence (Seq2Seq), and a 
temporal convolutional network (TCN), on the prediction of packet data convergence protocol 
(PDCP) traffic volume. Depending on the available data sampling rate, ranging from 5 
minutes to 30 minutes, a different model provides the best RMSE. At the extremes, the 
Seq2Seq model achieves the best performance, scoring an RMSE of 76.13 Mbps and 56.48 
Mbps for the sample rates of 5 minutes and 30 minutes, respectively. The predictions are 
then used to allocate PRBs to 2 different network slices with a traditional, i.e., non-AI, 
algorithm. Similarly, in [27] a proactive network slicing xApp was developed to allocate 
physical resources to RAN slices. The allocation takes as input the LSTM-predicted Medium 
Access Control packet sizes in the upcoming 100 TTIs, which are obtained from the time 
series during the most recent 1000 TTIs. The prediction model scores and accuracy of 
92.45%. 

TRAFFIC ANOMALY DETECTION 
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High data rate peaks are typically related to specific hours of the day and geographical 
locations. However, specific events, e.g., a sport match or a parade, may lead to unexpected 
traffic requests. For this reason, the radio resource allocation may integrate the detection of 
traffic anomalies to improve the resource utilization. Under this framework, the authors in [23] 
proposed a logistic-regression-based solution and an XGBoost ML model to identify 
anomalies in the data rates of 5G cells. The logistic regression and XGBoost algorithms 
scored an area under the curve of the receiver operating characteristic (AUC-ROC) of 87.0% 
and 90.7%, respectively. 

POWER ALLOCATION 

With strong implications on user throughput and energy consumption, power allocation is one 
of the most important RRM tasks. In [24], a multi-agent deep reinforcement learning (DRL) 
framework is developed to determine the optimal power allocation of RUs based on UE 
measurement reports, with the objective of maximizing the network energy efficiency under 
station-specific power and user-specific throughput constraints. With respect to the initial 
conditions, set to an equal power distribution over the PRBs of each RU, the DRL model 
achieves a 72.3% improvement in energy efficiency, computed as the total data rate over the 
overall power allocated to RUs. Under the RAN slicing paradigm, a power allocation xApp is 
implemented in [28], together with a radio resource allocation xApp, with the aim of improving 
the bitrate of enhanced Mobile BroadBand (eMBB) slices and reducing the delay for ultra-
reliable low latency communication (URLLC) slices. In particular, a deep-Q-network (DQN) is 
deployed to set the power level of gNBs, optimizing the performance of the 2 types of slices 
and penalizing high power consumptions. Under a federated learning framework, the learnt 
Q-tables are processed together with the Q-tables obtained in the resource allocation xApp 
to jointly optimize the policy to be taken. The power allocation problem is also tackled jointly 
with user association and resource allocation in [29] through the adaptive genetic algorithm 
(AGA). The power allocation subproblem is formulated as a dual “0/1” multiple knapsack 
problem, where each knapsack represents a gNB and each item a UE. The objective is the 
maximization of the user throughput, considering power consumption as item weight, user 
throughput as item value, and power capacity as knapsack capacity. The joint approach to 
power allocation and resource allocation is also taken in [30], where a DQN is first used to 
choose a primary power based on the transmission rate, the initial transmission power, the 
channel state information (CSI) and the length of queued data in the buffer. Based on the set 
transmission power values, a resource allocation DQN performs the PRB allocation between 
gNBs and UEs. Finally, a finer power allocation is carried out by a dedicated DQN, 
considering the chosen resource allocation. 

RADIO RESOURCE ALLOCATION 

The allocation of radio resources, e.g., of PRBs to UEs, is the core RRM task. As the time 
and frequency resources are scarce, an algorithm should be implemented to determine what 
is the optimal use of such resources, i.e., which UEs should be allocated to the available 
PRBs to maximize identified metrics. An xApp for the optimization of the resource block 
groups to UEs allocation among multiple cells has been tackled in [31], comparing the 
performance of the advantage actor critic (A2C) and parametrized policy optimization (PPO) 
algorithms. Both the algorithms aim at maximizing the quality of experience (QoE) within the 
network considering the channel request, the channel quality indicators (CQIs) from the CSIs, 
the data rate, and the UE fairness for each UE. The work has shown that PPO converges to 
the maximum QoE faster and in with a steadier behaviour in time compared to A2C. In [28], 
the resource allocation is carried out jointly with a power allocation xApp, aiming at optimizing 
the resource usage among different network slices using a DQN. Resources allocated to 
eMBB slices provide higher rewards if they provide a large increase in throughput, while 
rewards associated to resources allocated to URLLC slices are dependent on the resulting 
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communication delay. Through the joint optimization of the power and resource allocation, 
the authors showed that the federated technique achieve 11% higher throughput for eMBB 
slices and 33% lower delay for URLLC slices with respect to the independent optimization. In 
[30], after a first round of power allocation with a dedicated algorithm, a DQN is implemented 
to perform the allocation of PRBs to UEs at each base station. The algorithm considers as 
state information the transmission rate, the allocated transmission power, the CSI, and the 
length of the queued data in the buffer, aiming at maximizing the total throughput of each 
base station. A finer second round of power allocation is then carried out based on the 
decided resource allocation. With each agent (gNB) sharing its state information with other 
agents, the resulting team-learning-based DQNs achieve up to 8.8% higher throughput and 
64.8% lower packet drop ratio than the same models running on local information only. 

TRAFFIC STEERING  

To manage the UE mobility from one cell to another, the RAN must implement techniques to 
handle handovers and dual connectivity. Through traffic steering, the UE connectivity can be 
managed by selecting primary and secondary cells, associating users to cells, and triggering 
handovers between cells. In [29] t, the user association task is solved together with the user 
association task in a dual “0/1” multiple knapsack problem, using AGA as solver. The 
objective is to find how to associate users (items) to gNBs (knapsacks) given the user 
demands (weights) in order to maximize the total available throughput (knapsacks’ total 
value), under the given maximum gNB capacity constraints. Under video streaming and voice 
over IP traffic requests, the proposed algorithm achieves an increased QoE with respect to 
the default genetic algorithm and the simple allocation to a single base station. The authors 
in [32] developed a traffic steering xApp to manage the user association to target Primary 
cells of the secondary node. The task is formulated as a Markov decision problem, which is 
solved with the use of a CNN-based DQN. The solution aims at maximizing the weighted 
cumulative sum of the logarithmic throughput of all the UEs across time, introducing a 
penalization of the reward based on the number of experienced handovers. The authors 
showed that the proposed algorithm is capable of increasing the overall spectral efficiency 
with respect to multiple benchmark algorithms under different types of traffic (video streaming, 
web browsing, and instant messaging). 

Clearly, the literature has proven that the near-RT RIC is able to tackle several RRM tasks in 
TNs through the implementation of AI algorithms. However, such algorithms should be 
evaluated in the context of NTNs to assess the achievable gains of the techniques in satellite-
based communications. Due to the extensive coverage area of communication satellites, as 
well as the short visibility windows due to the satellite’s movement, RRM is particularly crucial 
in NTN. For example, as reported in [33], in the context of user-centric beamforming in LEO-
based NTNs, the beamforming performance are strongly dependent on the channel matrix 
rank, where the channel matrix is the matrix of CSI vectors (i.e., the vector of propagation 
channel coefficients between a UE and each radiating feed on board of the satellite) of the 
UEs scheduled for transmission within a considered time slot. Hence, resource allocation, 
with an emphasis on user scheduling, is critical for the maximization of the user-centric 
beamforming performance. Furthermore, in the case of CSI-based user-centric beamforming, 
the beamforming vectors are computed on feedback CSI relayed by the UEs, which are 
subject to channel aging. Depending on the user-centric beamforming architecture, the aging 
interval can assume different durations and introduce strong degradation in the CSI accuracy, 
resulting in large inter-beam interference [33]. For this reason, AI-based channel prediction 
techniques may be implemented to counteract this effect, e.g., [34], [35]. 
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4.2.3 AI-techniques for near-real time RRM 

In the context of user-centric beamforming, the user scheduling RRM algorithm can be 
formulated as an optimization problem, aiming at maximizing or minimizing an objective 
function 𝐹(⋅), e.g., system capacity, per-user throughput, SINR, user fairness, or a combination 

of multiple identified KPIs. The scheduling task can be subject to several constraints, which 
can limit the search space for the optimal RRM solution. Per-UE throughput requirements may 
be set for all the 𝐾 users to ensure that a minimum performance level is provided within the 

coverage area. If priority classes are introduced, more stringent throughput requirements can 
be set for high priority users. Furthermore, based on the set scheduling window, a maximum 
number of time slots 𝑇𝑚𝑎𝑥 for the user allocation can be set as an additional constraint. Finally, 
constraints can be associated to the variable to be optimized, e.g., a 𝐾 × 𝑇𝑚𝑎𝑥 binary matrix 𝐴 

representing the association of 𝐾 users and 𝑇𝑚𝑎𝑥 time slots. Based on the available user 
information 𝐼 (i.e., the channel coefficient of correlation matrix for CSI-based scheduling or the 

inter-users great circle distance matrix for location-based scheduling [36]), the optimization 
function 𝐹(𝐴, 𝐼), and the set of 𝑀 constraints 𝒞 = {𝐶𝑚(𝐴, 𝐼)}𝑚=1,…,𝑀, the optimization problem 

can be formulated as: 

min
𝐴

𝐹(𝐴, 𝐼) 

subject to 𝒞 

Due to the non-linearities present in typical optimization functions and constraints, AI 
algorithms, with emphasis on unsupervised ML techniques, can be implemented to learn 
patterns from a training dataset. In particular, DRL algorithms, like DQN, can be trained to 
determine the optimal policies, i.e., the optimal user scheduling. Q-Learning introduces the 
concept of state-action value function (or Q-function) of a policy π, 𝑄𝜋(𝑠, 𝑎), which represents 

the expected reward obtained by taking action 𝑎 from a certain state 𝑠 and following policy π 
for the next steps. The Q-function that follows the optimal policy is represented by 𝑄∗(𝑠, 𝑎) and 

can be approximated by iteratively using the Bellman optimality equation, i.e., by computing 

𝑄𝑖+1 (𝑠, 𝑎) ← 𝔼 [𝑟 +  𝛾 max
𝑎′

𝑄𝑖 (𝑠′, 𝑎′)] at time step 𝑖 [37], where 𝑟 represents the immediate 

reward achieved by taking action 𝑎 from state 𝑠, (𝑠′, 𝑎′) are the generic future state and action, 

and the maximum reward obtainable at state 𝑠′, max
𝑎′

𝑄𝑖 (𝑠′, 𝑎′), is reduced through a 

discounting factor 𝛾. In DQN, a deep neural network (DNN) is used as a function approximator 

to learn the optimal Q-function, i.e., to obtain 𝑄∗(𝑠, 𝑎; 𝜃𝑖) ≈ 𝑄∗(𝑠, 𝑎) given the DNN parameters 

𝜃𝑖. In particular, the DNN is trained to minimize at each step 𝑖 the temporal difference error: 

𝐿𝑖(𝜃𝑖) =  𝔼[(𝑦𝑖 − 𝑄(𝑠′, 𝑎′; 𝜃𝑖))2], 
 

𝑦𝑖 =  𝑟 +  𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖−1). 

Taking into account user scheduling, an episode can correspond to one scheduling window, 
and each step within an episode can correspond to a scheduling time slot. To perform user 
scheduling, a scheduler requires the available user information 𝐼, which should then be 
contained in the state 𝑠. The action 𝑎 can be represented by the 𝐾-elements-long binary 

scheduling vector, in which a 1 in position 𝑘 implies that user 𝑘 is scheduled within the current 
time step. The reward 𝑟 should consider one or more KPIs resulting from the user-centric 

transmission towards the scheduled users, depending on possible additional state information. 
As an example, 𝑟 can coincide with the average SINR among the scheduled users during the 
current time slot, assessed through the computation of the corresponding beamforming matrix. 
By including in 𝑠 the number of times each user has already been scheduled within the current 
episode, fairness metrics can be included within the reward (e.g., introducing a penalization 
for each user that has not been scheduled by the end of the scheduling window, or a reward 
based on the increase of a fairness KPI, such as the Jain index). Constraints on the SINR, 
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e.g., minimum SINR levels for users with high priority, may be mapped to a reduction in reward 
if such requirements are not satisfied. Similarly, different types of services may be considered 
by including each user’s traffic demand in the state 𝑠 and introducing the corresponding reward 

penalizations in 𝑟 [38]. 
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5 RAN SOFTWARIZATION  

5.1 GENERAL STACK MODIFICATIONS TO ENABLE POC 

5.1.1 RIC – RAN interface to enable monitoring and control 

The complex nature of the PoC means that the ability to monitor and control different functions 
and procedures at various levels of the RAN stack was essential. 

To that end, a critical part of the RAN software extension was to enable such functionality. 
Instead of designing and implementing a bespoke system to achieve such functionality, it was 
decided to leverage the abilities of the O-RAN E2 interface to provide this functionality.  

O-RAN E2 interface facilitates communication between the RIC and other RAN elements, 
specifically the DUs and CUs. It enables the RIC to exert control over the RAN, allowing for 
the transmission of data and control messages. This capability supports the management of 
radio resources, monitoring of network performance, and implementation of network policies. 
 
The functionality of the E2 is split into two aspects, the E2 application protocol (E2AP) and the 
E2 service models (E2SM): 

• E2AP is the protocol framework used for communication between the RIC and E2 
nodes, such as DUs and CUs. It manages the setup, modification, and release of E2 
connections and ensures the reliable delivery of control messages. 

• E2SM, on the other hand, defines specific functions and data structures for particular 
RAN management tasks, such as traffic steering, quality of service (QoS) 
management, and anomaly detection.  

The implementation of specific service models is what provides the capabilities of monitoring 
and control that are of interest to our PoC implementation, specifically the key performance 
measurement (KPM) service model and the remote control (RC) Service Model. 

The KPM service model defines the framework for collecting, reporting, and analysing KPIs to 
monitor and optimize RAN performance and the RC Service Model specifies the mechanisms 
for dynamic control and configuration of radio network parameters to optimize performance 
and resource utilization in the RAN. 
In the srsRAN, the high-level architecture of the E2 agent is depicted in Figure 20. We have 
the following top-level components: 
 

• E2 Setup Procedure: This component manages the establishment of the connection 
between the E2 agent at the RAN and the RIC. It will communicate the supported E2 
capabilities in this particular RAN, known as the RAN functions. This block will establish 
what RAN functions will be active during the session. 

• E2 Subscription Procedure: This component manages the establishment of 
subscriptions between the RAN and the RIC. The subscription procedure will 
communicate details of which metrics are being requested by the RIC and in what way 
they are to be reported. The procedure will then work in cooperation with the 
subscription manager to check if the request is compatible with what is supported in 
the RAN and set up the flow of data accordingly. 

• Subscription Manager: The subscription manager is charged with handling all tasks 
related to the subscriptions. It will check if the requested metrics are supported, it will 
start and handle the indication message procedure and it will manage the interaction 
with the RAN stack. Once the subscription is finished it will perform the cleanup.  
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• RIC Control Procedures: The RIC control procedure handles the process by which 
parameters within the RAN can be changed by the RIC. This complex process will inject 
the request into the RAN, manage the reconfiguration and return the result to the RIC.  

• E2SM Manager: The E2SM manager handles all the data structures related to the 
different service models supported by the RAN. It enables the adding and removing of 
services and provides the interfaces to the different service objects to the rest of the 
components.  

 

Figure 20: High-level architecture of E2 agent in srsRAN. 

5.1.2 API creation for RU integration at desired split level 

In O-RAN architecture, the distribution of radio stack functions between the DU and RU can 
follow several different split options, each with its own set of benefits and trade-offs. Here are 
some of the most commonly used DU-RU split options: 
 

• Split 8 

• Split 7.2x 

• Split 6 

Split 8 places the whole PHY at the DU side and only sends time-domain in-phase and 
quadrature (IQ) samples over the DU-RU interface, this is the simplest option but requires a 
very high data rate, for large bandwidths (100MHz+) this becomes impractical.  

Split 7.2x allows for lower fronthaul bandwidth requirements by pushing some of the PHY 
processing to the RU but requires higher complexity at the RU, additionally it still has stringent 
latency requirements for the fronthaul as with Split 8.  

Split 6 places the entire PHY at the RU which significantly relaxes the latency requirements of 
the fronthaul, however it significantly increases the complexity of the RU. 
 
The 7.2 split has emerged as the favoured ORAN split because of its lower complexity RU 
design, lower bandwidth requirements and simple interface allowing for easy inter-vendor 
integration. This is the split that will be utilized in 5G-STARDUST. 
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The OFH is the communication interface used to link a DU with one or multiple RUs. It 
implements split 7.2x which balances the trade-offs between keeping the RU as simple as 
possible and reduce the interface throughput. It is internally split into the following logical 
planes: 

• CUS plane: control, user and synchronization. 

• M plane: management. 

The CUS plane is further split into different data flows to exchange data between the DU and 
the RU. 

• User plane: 

• Data flow 1a: flow of IQ data in fast Fourier transform (FFT) frequency domain 
on DL 

• Data flow 1b: flow of IQ data in FFT frequency domain on UL 

• Data flow 1c: flow of physical random access channel (PRACH) IQ data in FFT 
frequency domain 

• Control plane: 

• Data flow 2a: Scheduling commands (DL and UL) & beamforming commands 

• Data flow 2b: License assisted access (LAA) listen-before-talk (LBT) 
configuration commands and requests 

• Data flow 2c: LAA LBT status and response messages 

• Synchronization plane: 

• Data flow S: timing and synchronization data 

 

Figure 21: OFH dataflows 

Each OFH message belongs to a specific data flow that is encapsulated in an enhanced 
common public radio interface (eCPRI) message which is transported over an Ethernet frame. 

The SRS OFH implementation has been split into different components to make it modular, 
easy to extend, easy to maintain and easy to test. 

It is mainly split into a transmitter component and a receiver component: each of which contains 
the corresponding data flows previously mentioned. Individual libraries have been developed 
for different compression algorithms, eCPRI packing and unpacking and raw Ethernet frame 
management. 
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Additionally, for performance reasons, both the transmitter and the receiver are executed 
concurrently in different threads to minimize the latency required to process the IQ samples. 
Our implementation leverages the 7.2x split within the ORAN architecture, utilizing the OFH to 
allow for simplicity in the RU while ensuring robust performance and modular design in the DU, 
ultimately enhancing interoperability and minimizing latency through concurrent processing. 
 

5.1.3 RAN modifications for NTN 

The implementation detail of the RAN modifications made for NTN have been covered in [39], 
here we provide a brief summary of that work to provide appropriate context for this deliverable.  

This part of the RAN softwarization task involved extensive modifications to the gNB-A 
components to enhance functionality for NTNs. The gNB-A is divided into the CU and the DU. 
The CU includes the PDCP, SDAP, and RRC, while the DU is split into DU-high (containing 
RLC and MAC) and DU-low (containing PHY). Key modifications focus on the DU-high, 
particularly on the scheduling offset, hybrid automatic repeat request (HARQ) extensions, and 
RLC enhancements. For the scheduling component, adjustments are required to 
accommodate increased delay (ntn_k_offset) for uplink scheduling, impacting queues for 
various messages, including scheduling requests and HARQ acknowledgments. The HARQ 
procedure enhancements involve either disabling HARQ and relying on automatic repeat 
request (ARQ) in RLC or extending HARQ processes to 32, necessitating changes in data 
handling and process management. The RLC extensions involve increasing retransmit times 
and buffer sizes, requiring additional memory and ASN1 adjustments for communication. The 
RRC modifications in the CU involve generating and broadcasting the SIB19 message, 
integrating ASN1 packing mechanisms, and updating fields with satellite orbital information.  

These modifications we performed on top of the SRS 5G RAN and are being integrated with 
the other enhancements made to the RAN as part of this work package for use in the PoC. 

5.1.4 Development of 60KHz SCS to enable FR2 

In the 3GPP Release 17, NTN bands (n255 & n256) have been established in the S-band, 

which is frequency range 1 (FR1). However, in later releases, it is expected that new NTN 

bands will be established in Ka/Ku which will be classified as frequency range 2 (FR2) bands. 

Establishing a multi-carrier link over Ka/Ku bands present a different challenge to that of S-

band. The main reason being the nature of the Doppler shift involved at these higher 

frequencies. At S-band frequencies, the maximum doppler shift is ~40kHz whereas in Ku/Ka 

bands doppler shifts can be as high as 400kHz. While the NTN procedures in the UE and gNB 

are designed to compensate this effect, there will always be a certain amount of residual 

doppler. For S-band this is easily handled by carrier frequency offset (CFO) compensation 

techniques that are common in multi-carrier cellular systems but in Ka/Ku bands this residual 

doppler has the potential to grow to a level that is not easily compensated CFO compensation 

techniques. The ability to effectively compensate CFO in a multi-carrier system is a function of 

(among other things) the subcarrier spacing (SCS) of the waveform. In Figure 22 we can see 

this fact represented graphically. The amount of intercarrier interference that takes place as a 

function of Doppler (normalized to SCS) shows us that a doppler shift of 30% of the SCS will 

result in a signal-to-interference ratio (SIR) of 8dB. This is probably the limit of what is 

reasonable to a system to function well, meaning that for 30kHz, a maximum of 9kHz residual 

doppler is tolerable, only 2.25% of the total possible doppler. Given that there is likely to be 

some unavoidable error in the doppler correction, 2.25% is not a large margin. It is for this 

reason that higher SCS is considered for FR2 cases.  
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Figure 22: Inter-carrier interference 
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6 ONBOARD PROCESSING 

6.1 INTRODUCTION, CONTEXT & DRIVERS 

The development of 5G, and long-term 6G NTN systems makes on-board processing with fully 
regenerative payload a major trend that tends to be generalized, especially for telecom 
constellation systems.  

When it comes to design processing capabilities, two sides shall be jointly considered: 

• Pros and opportunities brought by processing: performances (e.g. gain on signal-to-noise 
ratio (SNR), system capacity, etc.) and provided features (internal system features that 
help system design, or value-added service directly perceived by users and customers) 

• Constraints and impacts: such as requirement related to processing, CPU, memory, 
power consumption, implementation, mass and sizing impact, resistance to radiations, 
and maybe thermal impacts. From these perspectives, any processing resources are 
always sized at the right level in operational systems and processing margins are sized 
to be limited for this reason. At the same time, in system with 5-10 years of satellite 
lifetime, the exact need in terms of telecom service may be hard to anticipate and size, 
particularly when thinking to the generalisation of software processing related to the 
processing of telecom services. Ideally, expectations from operation and service 
providers would be to integrate satellite constellations in Cloud infrastructures with the 
same level of flexibility and number of resources as found in ground. 

Such trade-off is hard to achieve, and generally speaking the exact mission and system 
objectives will allow to determine what are the limits to consider - hence on a per system basis.   
In short-term application, and first generation of 5G constellation system, the target cost to 
consider for wide-scale constellation is in Billions of dollars. System offered capacity (total 
Gbps) and achieved bit rate per users (peak/average) are among the first KPIs of interest. 
The offered Gbps capacity per satellite can also be derived.  
It means that this amount shall be: 

• Supported in every external communication interface 

• Feeder link (satellite-to-Gateway), possibly with multiple Gateways at the same 
time 

• On inter-satellite link (ISL), if the system is equipped  

• On the user link. This represents on the user link ~50 to 500 MHz of spectrum 
band to process, and frequency reuse may apply among different spot beams 
raising this even higher. 

• Supported by the OBP router / switch (sum of all data rates) 

• Supported on all internal communication interfaces (for example between radio access 
layer and infrastructure-level network layer)  

Other drivers can be cited: 

• The development of 5G/6G NTN standard remains without any large-scale deployment 
today, letting aside non-standard 4G based solutions, and/or in-orbit experimentations. 
The 5G/6G found its origin in terrestrial networks where the resources are “unlimited”. Do 
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the requirements and 3GPP specifications (at least in short-term) will actually be feasible 
in operational system where satellites are used as (partial) 5G base stations? For 
processing requirements, the short-term critical questions relate to: 

• The question of high frequency update (more CPU) demanded by 3GPP 
process (user plane, control plane) and by the supporting means such as active 
antenna for near real-time beamforming 

• The memory requirement can be significant (upon the exact role of the satellite 
and split of on-board function; could be several Gbytes to tens or hundreds of 
Gbytes) 

• Application on the virtualization concepts and technologies on the execution platforms: 

• Strong incentives to support and segregate distinct missions, and/or services 
from distinct operators; they can manage services on their own, on the other 
hand in a context of limited resource it is difficult to ensure an optimal allocation 
in particular taking into account variations (dynamic and elastic partitioning) with 
generally some pre-empting usages. 

• Achieved QoS and QoE: 

• In addition to data rates 5G/6G users will expect low and stable end-to-end 
delay, while access to the majority of 5G services known in TN.  

• Continuity of service: transparent handover, with no/few packet losses. 

Last, impact on 3GPP standard may also have to be considered. For example, some 
implementation feasibility could lead to introduce features in the scope of desired Release. 
Even if deviations can always be implemented on a per system basis, they should be 
minimized to guarantee the long-term support of the feature. 

BEAM MANAGEMENT 

When it comes to digital processing on-board topic, the antenna beamforming strategy is 
among first topic to consider for the antenna beam laws computation and application. At 
system level, the question of Earth moving beams vs Earth fixed beams require first a trade-
off analysis. Beam size determination can also be jointly considered, if not already known in 
customer specifications. 

Table 4: Earth moving beams vs Earth fixed beams comparison 

 PROS CONS 

Earth moving cell 

Simpler satellite beam 
management (for antenna and 
its Beam Forming Network) & 
Radio Parameters 
configuration 

QoS and Performance: 

• Frequent radio HOs. 

• Impact on UE Throughput 
(overhead due to heavy HO 
singnalling) 

Earth-fixed cell 

Smooth impact on 5G 3GPP 
standard and against 
exisitng Terrestrial Network 
  
QoS and Performance: 

• Less Frequent radio 
Hos 

More complex satellite beam 
generation. 

Potentially requires additional 
change/adaptation with respect to 
radio parameters configuration. 
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• Less Impact on UE 
Throughput 

 

More in detail: 

• From QoS and performance perspective, moving cells may suffer from recurrent 
handovers (HOs): In these cells, the signalling overhead due to HOs may range from tens 
of kbps at the nadir to hundreds of kbps at satellite coverage border. 

• For earth fixed cells the HOs happen in bursts. The peak in number of handovers can be 
lowered by extending the overlapping period (this is implementation dependent, e.g. 
constellation design). 

• Due to the asynchronous nature of the NR Release 15 handover functionality with random 
access at every cell change, there is an undesirable temporary data interruption gap at 
every handover. This is impacting mainly the moving cell, the connected UE is non-stop 
handed over between cells. This may degrade the end-user QoE. 

• Another main KPI to be considered when comparing fixed and moving cells is the 
handover success rate. This KPI is likely to be degraded on moving cell due to fast 
mobility and high volume of Handovers (more than 250000 HOs/h in case of moving cell 
of 60km size). Furthermore, in case of a handover failure, the UE cannot return to old cell 
(due to the motion of the source moving cell) which means the call will be simply dropped. 
Because the moving cell is suffering largely from the fast mobility and high volume of 
handovers to be handled, we can expect that: the overall HO success rate for the moving 
cells will be lower compared to fixed cells, while the call drop rate will be greater compared 
to fixed cells. 

• When it comes to tracking area management, for Earth fixed cell deployment: Earth Fixed 
timing advance is used. Thus, no enhancement will be needed in the standard. For 
moving cell: Earth Fixed timing advance or moving timing advance can be used. This will 
need some modification in the 3GPP standard. 

Overall, the earth fixed cells are the preferred solution with respect to QoS and 
performance and smooth impact of 3GPP standard. 
  
In the following we consider 3 incremental on-board architectures, each requiring more 
demanding resources, but also offering more features. 

We could associate: 

• CU/DU splitting (split 2) more relevant for the short-term application (current constellation 
design) 

• Full gNB on-board to mid-term (3-5 next years) 

• Full gNB + user plane function (UPF) for even long-term (>5 years) 

6.2 CU/DU SPLITTING 

The first option is to consider gNB CU/DU split, and according to the on-board and ground 
architecture presented in Figure 23. 
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Figure 23: Payload and ground architecture - split 2 (DU/RU on board, CU on ground) 

The physical layer is responsible for coding, modulation, beamforming, and mapping of the 
signal to the appropriate physical time-frequency resources. It provides services to the MAC 
layer in the form of transport channels and the overall transport channel processing is mostly 
the same in UL and DL. 

A cyclic redundancy check (CRC) for error-detecting purposes is added to each transport 
block, followed by error-correcting coding using low density parity check (LDPC) codes. Rate 
matching adapts the number of coded bits to the scheduled resources, the code bits are 
scrambled and fed to a modulator, and finally the symbols are mapped to the physical 
resources, including the spatial domain. For the UL there is also a possibility of an FFT-
precoding to reduce the peak-to-average-power ratio (PAPR) of the signal at the amplifier 
input.  

One key aspect of this processing chain is the multi-antenna precoding, i.e. beamforming. The 
purpose of the precoding is to map the different transmission layers to a set of antenna ports 
using a precoder matrix to provide directivity and focus the overall transmitted power in a 
certain direction. In the context of a digital beam forming network, this operation may present 
a challenge in terms of implementation complexity, especially in a fixed beam scenario where 
the beamforming laws must be updated frequently. 
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At access layer, one important function to perform is the real-time L2 scheduling. 
Implementation of the scheduler shall be carefully investigated: firstly, its performance is 
detrimental to delivered QoS, and shall be accommodated with the relevant transmission 
channels (FR1 or FR2, according to the type of satellite channel). The typical dynamicity (few 
ms) to consider is different on the satellite (even LEO) case than for terrestrial case and could 
be relaxed on a ~10 ms basis, or more with Gaussian channels (FR2 case in particular). A 
positive impact for alleviating processing, if a starting implementation was used from a TN 
software stack would be expected. 

6.3 FULL GNB ON-BOARD 

In a second architecture, the full gNB is envisaged on-board (see Figure 24). 

 

Figure 24: Payload and ground architecture - gNB on board and UPF/CN on ground  

Note that split can have various impact on system levels implication, but this analysis exceeds 
the scope of this discussion. 
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The full gNB implementation will add processing and network load to consider, in particular for 
the short-term.  

Architecture with full gNB on-board makes easy the implementation of RAN-Core 
interconnection conceptually, while validation of communication interface shall still be carefully 
investigated in the context of NTN. Industrially speaking, it is also of interest. However, no 
application layer nor caching functions can be implemented on board in this architecture as 
the N3 interface tunnels the traffic between the gNB and the UPF. Full gNB can be an 
intermediary step to the last architecture. 

6.4 FULL GNB ON-BOARD + UPF 

The third architecture envisages the full gNB on-board with UPF functions (see Figure 25). 
 

 

Figure 25: Payload and ground architecture - gNB + UPF on board and core network on 
ground  

This third architecture is compatible with mesh connectivity through the N9 interface at the 
OISLs. It can provide the ability for a user terminal to reach back without the need for anchor 
relay. The consideration of limited power and computing resources further highlight the need 
for efficient processing of traffic at gNB + UPF side, and algorithms that optimize resource 
usage while minimizing energy consumption. Potentially only a subset of the traffic could be 
fully processed on-board enabling Space Edge Computing (SEC) and Mesh only for this part 
of the traffic. 
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This architecture is also compatible with SEC as the N6 interface of the UPF enables accessing 
to the PDU layer which makes it then compatible with application layer and caching functions.  

SEC1 refers to the deployment of computational resources and data processing capabilities 
closer to the data source—in this case, on satellites payload. This approach aims to reduce 
latency, optimize bandwidth usage, and enhance the efficiency of satellite communications by 
processing data at the "edge" of the network rather than transmitting it back to centralized data 
centers on Earth. 
However, to provide these functions the satellite needs to be equipped with additional OBP 
units, such as CPUs, GPUs, or specialized accelerators, or mass storage. These nodes can 
perform data analysis, filtering, caching and decision-making tasks in orbit.  

This is one of the main challenges of SEC as satellite have limited power resources, size and 
mass, and the processing of the traffic is already demanding which may leave few processing 
units for other tasks or value-added application. It’s a tradeoff (economical and technical) that 
should be done between the processed traffic and the capacity to perform application layer or 
caching function that can provide added value.   

In some use cases processing data locally on the satellite can help that only relevant or 
summarized information is transmitted back to Earth, to significantly reduce the volume of data 
that needs to be sent over potentially limited bandwidth links. Edge computing can also 
minimize the time it takes to process and respond to application layer request, as it avoids the 
delays associated with transmitting data to and from ground stations.  

However, one of the big challenges in SEC for LEO constellations is the fact that the satellite 
is moving and then the edge for the UE is frequently changing, making needs for SEC HO and 
context exchanges.  

Further, the SEC approach will be a concrete case to instantiate concepts of payload (or OBP) 
resources. OS virtualization (Hypervisor type 1 or 2) or container-based approach (Linux 
Docker) are very popular solutions. Not speaking about the services (e.g., data analysis, 
filtering, caching and decision-making, etc.) the top-level implementation issues to consider in 
the design choices include: 

• How the computing resource arbitration is managed among the service (soft / elastic 
partitioning)? or hard partitioning? is the ground involved in the decision process, what is 
the dynamicity to be expected? 

• What about segregation / isolation constraints between the OS/containers from the 
Cyber-security perspectives? is the qualification level of cyber-security of the hypervisor 
relevant to the specific services and missions envisaged? 

 
 

 

1 Space edge computing is also addressed as part of T5.5 in WP5, in the context of ‘Onboard networking 
capabilities’ and later documented in deliverable D5.5 due at M30 of the project. 
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7 CONCLUSIONS AND NEXT STEPS 

This concluding section provides the main findings, draws the conclusion and suggests a way 
forward in the next iteration of this deliverable.  

NON-RT RIC 

The non-RT RIC is a key component in the O-RAN architecture designed to RAN operations 
with control loops that exceed one second. This controller supports the development and 
deployment of AI/ML models that are essential for optimizing RAN functions over longer 
timescales. It is integrated into the SMO framework of the O-RAN architecture and 
communicates with other network elements via the A1, O1, and O2 interfaces. 

The non-RT RIC plays a significant role in data management, policy definition, and machine 
learning model training and validation. It can collect extensive data from RAN elements, 
enabling advanced analytics to refine network performance and optimize resource utilization. 
The primary responsibilities of the non-RT RIC include defining and distributing policies that 
guide RAN behaviour and continuously refining these policies based on long-term data 
analysis. It also involves the collection and analysis of vast amounts of RAN data to train ML 
models that can predict and adapt to network conditions, identifying performance bottlenecks, 
and providing strategic planning for load balancing and resource management based on long-
term usage patterns. 

In addition to these core functions, the non-RT RIC addresses several specific challenges and 
explores various AI techniques to optimize network performance. One significant problem is 
traffic offloading, where AI-based techniques determine when to offload traffic to NTNs during 
low traffic periods, such as night-time in rural areas. This approach can lead to considerable 
energy savings by switching off some terrestrial network cells or carriers during low load times. 
Another critical issue is bandwidth allocation, where AI techniques pre-allocate PRBs on a 
large timescale based on traffic demand forecasts, thus ensuring efficient use of satellite 
resources and meeting user demands efficiently. These aspects will be further explored in 
Deliverable 4.7. 

Load/traffic prediction is another essential aspect, where accurate forecasts ensure optimal 
radio resource allocation. AI models are employed to predict traffic loads, enabling dynamic 
adjustments to network resources to handle varying traffic patterns effectively. Furthermore, 
the non-RT RIC role in performance optimization involves analysing historical data and trends 
to identify bottlenecks and suggest improvements, refining resource allocation strategies to 
enhance overall network performance. 

To tackle these challenges, various AI techniques are applied. In this document, techniques 
like KANs and MLP for time series forecasting or for load prediction exemplify how AI can be 
leveraged to improve network operations. 

The next steps for non-RT RIC development should focus on addressing additional potential 
problems and exploring other AI techniques to further enhance network optimization. 
Developing AI models is useful to enable proactive radio resource and enhancing network 
performance and preventing service disruptions.  

Probabilistic forecasting AI techniques offer a powerful approach for predicting various aspects 
of network performance in the context of non-RT RIC. Unlike traditional forecasting methods 
that provide a single-point estimate, probabilistic forecasting generates a range of possible 
outcomes with associated probabilities, enabling more robust and reliable decision-making. 
Probabilistic forecasting techniques based on AI can be employed to capture the inherent 
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uncertainties in network conditions and traffic patterns. These methods allow for more accurate 
prediction of load variations, potential bottlenecks, and resource demands, thereby enhancing 
the ability of the non-RT RIC to optimize resource allocation, plan for future capacity needs, 
and mitigate potential issues before they impact network performance. By incorporating 
probabilistic forecasts, the non-RT RIC can better manage long-term network planning and 
operational strategies. 

By focusing on these potential problems and exploring these advanced AI techniques, the non-
RT RIC can continue to evolve and significantly enhance the performance and reliability of 5G 
networks. 

NEAR-RT RIC 

This deliverable presents an overview of the O-RAN-standardized near-RT RIC architecture, 
together with the State of the Art of the AI-based RRM algorithms that can be implemented in 
it. The State of the Art includes a list of approaches, i.e., AI techniques and algorithms, that 
have been proposed in the literature to tackle specific RRM functions in the near-R RIC, 
focusing on TNs. Indeed, the application of AI algorithms for RRM in the near-RT RIC in NTN 
systems has not been investigated yet in the literature. As a first step, this deliverable presents 
the user scheduling RRM task in the context of user-centric beamforming in NTN from the point 
of view of DRL. The next iteration of this Deliverable, from the near-RT RIC side, will assess 
the performance of AI for RRM in NTN, considering the information presented in this 
Deliverable on user scheduling for user-centric beamforming as a starting point. For the 
evaluation, which will be carried out by means of simulation tools, the usage of datasets will 
be considered. In the context of user-centric beamforming in NTN, the system performance is 
typically dependent on the on-ground user spatial distribution [40]. For this reason, user 
position datasets may be used in this activity, e.g., part the Satellite Network Dataset provided 
by HSP in the context of the 5G-STARDUST project [3], or the public datasets listed in Section 
5.4.2 of [41]. 

ONBOARD PROCESSING 

A discussion about the design of processing capabilities has been initiated in this deliverable. 
The opportunities and constraints brought by such processing are highlighted, as well as other 
drivers. When it comes to digital OBP topic, the antenna beamforming strategy is among the 
first topic to consider, so at system level the question of Earth moving beams vs. Earth fixed 
beams has been the subject of a first trade-off analysis. Then, three incremental on-board 
architecture are considered, each requiring more demanding resources, but also offering more 
features. These architectures can each be associated with a certain time horizon (short, mid, 
long term) and the features provided for each case is discussed. The notion of SEC is 
considered in the last architecture where the full gNB is on-board with some UPF functions. 

RAN SOFTWARIZATIOTN 

This deliverable outlines the implementation effort for monitoring and controlling various 
functions within the 5G NTN using the ORAN E2 interface. It leverages the E2AP and E2SM 
to manage radio resources and optimize RAN performance. Additionally, it details the creation 
of the OFH under the 7.2x split, which enables quick and efficient integration with any RU. 
Finally, it provides an overview of the NTN extensions made to the 5G RAN. Future work will 
focus on expanding service models for specific NTN use cases, refining and advancing the 
NTN capabilities of the RAN, and performing any further extensions necessary to integrate the 
RAN solution into the PoC. 
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