

Non-Terrestrial Networks: A Connectivity Paradigm Shift Towards 6G

FUSECO FORUM 2023

Berlin, 14-15.09.2023

Tomaso de Cola

German Aerospace Center (DLR)

Project Overview

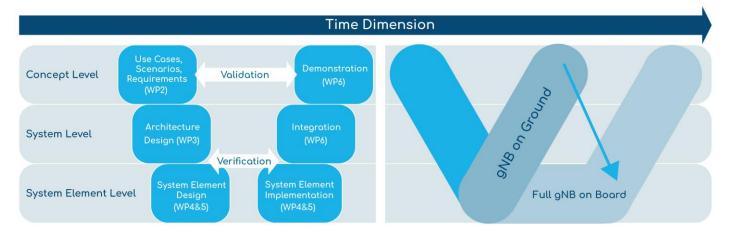
Full name: Satellite and Terrestrial Access for Distributed,
Ubiquitous and Smart Telecommunications
Stream: A-01-02 Ubiquitous Radio Access
Project Coordinator: Tomaso De Cola, DLR
Technical Manager: Mathieu Arnaud, Thales Alenia Space (F)

The Consortium

PROJECT AMBITION

Design, develop and demonstrate a deeper integration of TN and NTN: Deliver a fully integrated 5G-NTN autonomous system with novel self-adapting end-to-end connectivity models for enabling ubiquitous radio access.

Project Objectives

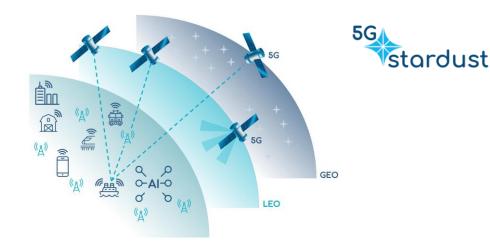


- Study, design, a **5G-based satellite network**, implementing onboard processing and storage capabilities towards effective networking and mobile computing in the sky.
- Define, design data-driven management system components, building on AI/ML based solutions for resource allocation and service provision in highly dynamic integrated hybrid networks.
- Design, implement, and demonstrate **E2E services over a fully integrated TN-NTN** advanced network architecture with regenerative space nodes.
- Contribute to the development of a European Research and Technology roadmap to ensure strategic positioning and global competitiveness of Europe in integrated TN-NTN communications.

Project Methodology

- System engineering approach based on the Vee-model with multiple increments:
 - From gNB on ground towards full gNB onboard NTN nodes
 - Concept, System, and System Element Level

TRL 5 Planned Demonstration


Timeline		5G Vsta	rdust	36	mont	hs	5G stardust
2020 2021	2022	2023		2024	2025	2026	2027
5G			5G /	Advanced			6G
Release 17		Release 18		Release	19	Release 20	Release 21
Satellite backhaul Transport networks with static b and latency		Transport networks variable bandwidth and				Ass	suming 18 months releases
Satellite connectivity to smart p	hones						
(5G NR): sub-6GHz, transparent payload		(5G NR): Coverage & n enhancements	nobility	(5GTNR): c enhancemen regenerative p	ts (e.g.	5G NR: further enhancements ?	
Satellite connectivity to IoT devi	ces			g	- , ,		
(4G NB-IoT/eMTC): sub-6GHz, tra payload	insparent	(4G NB-IOT/eMTC enhancements (mobility discontinuous covera	, MAC,	(4G NB-IOT/6 other enhance (e.g. store & f	ements		
Satellite connectivity to "VSAT"		(5G-NR): in 10 GHz b	ands	(5G-NR): C enhancemen	ts (e.g.		
			6G:	Service require for NTN	ements 6G.	Study on the suppor NTN component	t of for the support of NTN-component –

5G-STARDUST.EU

© 2023-2025 5G-STARDUST

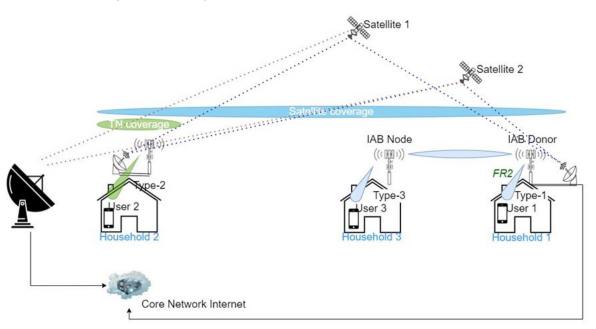
KEY TECHNOLOGIES

- Regenerative payloads for GEO and NGSO systems
- Unified radio interface for cost-effective converged TN/NTN multi-tenant networks
- Softwarised self-organised network
 architecture
- E2E AI-Driven Network Design

Reference Scenarios

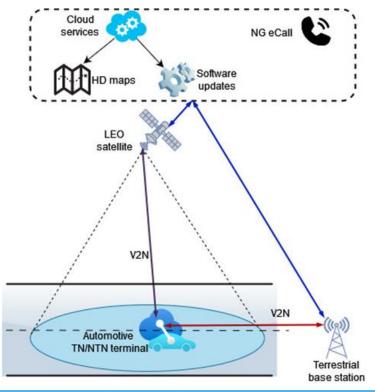
Topics	Scenario	Description
	Scenario 1.1	Airway GEO and NGSO complementing terrestrial coverage when airplane leave the airport. 5G broadband services for passengers with terrestrial and satellite, providing a homogeneous and transparent experience for users.
DUAL CONNECTIVITY	Scenario 1.2	Direct Access/LEO (IAB), helping to fast deploy networks to accelerate terrestrial 5G rural deployments or temporal gap filler. FWA from LEO/GEO with dual connectivity and common O&M with terrestrial and satellite, providing a homogeneous and transparent experience for users and a common management for the MNOs.
Architecture and Service Distribution	Scenario 2.1	V2N communications to enhance 3 different services like Software over the air updates, HD maps updates and NG eCall service to provide rapid assist in serious accident; using TN and LEO satellites to extent V2N coverage for underserved areas.
	Scenario 2.2	PPDR communication in case TN infrastructure is damaged during a disaster event. NTN will provide temporarily coverage for first responders. Also, extended coverage in case of uncovered areas for first responder agencies is considered. Direct and backhauled access of LEO satellites.
	Scenario 2.3	Distributed 5G Systems for private networks. LEO onboarded with UPF, ensuring shorter global data paths, data retention and potentially with ultra-secure and ultra-reliable signalling centralized in satellite environment.

Dual Connectivity Scenarios



Maritime, railway, airway neutral host-cell (UC1.1) Satellite Satellite 5G NR 5G NR Airplane Non-5G NR Terrestrial 5G NR Network Airport Terrestrial Network 5G Cell Inside airplar 5G PLMN-TN PLMN-NTN ressource allocation Internet Core Network

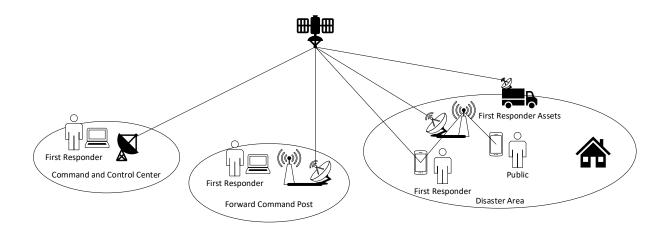
Dual Connectivity Scenarios



• Residential Broadband (UC1.2)

Architecture and Service Distribution Scenarios

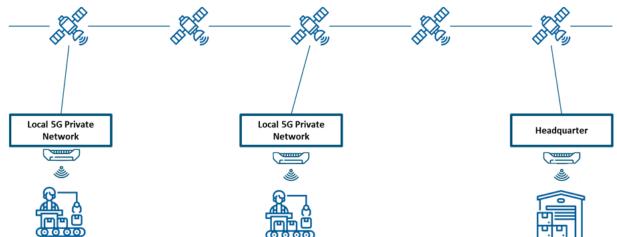
 Vehicle connected (UC2.1)



5G-STARDUST.EU

Architecture and Service Distribution Scenarios

 Broadband for Public Protection and Disaster Relief (PPDR) (UC2.2)



Architecture and Service Distribution Scenarios

NTN Architecture Option Analysis

Category	#	Payload	Connectivity (D: direct; I: indirect)	Served entity	ISL	Latency	Capacity	Adaptations to handset	Adaptations to VSATs	Payload complexity	Expected Release
Regenerative	1a	gNB	D	UE	Y						Rel. 19
	1b	gNB-DU	D	UE	Y						Rel. 19
IAB	2a	т	I	IAB-node	N						Rel. 19-20
	2b	т	I	IAB-Donor	N						Rel. 19-20
	2c	IAB-Donor	I	IAB-node	Y						Rel. 19-20
	2d	IAB-Donor DU	I	IAB-node	Y						Rel. 19-20
MC	3a (NTN-TN)	gNB	D	UE	Y						Rel. 19
	3b (NTN-NTN)	gNB	D	UE	Y						Rel. 19
	3c (NTN-NT)	gNB-DU	D	UE	Y						Rel. 19
	3d (NTN-NTN)	gNB-DU	D	UE	Y						Rel. 19
	3e (NTN-TN)	т	D	UE	Ν						Rel. 18
	3f (NTN-NTN)	т	D	UE	N						Rel. 18

NTN Architectures vs Use-Cases

Category	#	Payload	Connectivity	UC1.1c	UC1.2a	UC1.2b	UC1.2c	UC2.1	UC2.2	UC2.3
Regenerative	1a	gNB	D							
	1b	gNB-DU	D							
IAB	2a	т	I							
	2b	Т	I							
	2c	IAB-Donor	I							
	2d	IAB-Donor DU	I							
MC	3a (NTN-TN)	gNB	D							
	3b (NTN-NTN)	gNB	D							
	3c (NTN-NT)	gNB-DU	D							
	3d (NTN-NTN)	gNB-DU	D							
	3e (NTN-TN)	т	D							
	3f (NTN-NTN)	т	D							

THANKS FOR YOUR ATTENTION

GET IN TOUCH

Website
5g-stardust.eu

∠ Email info@5g-stardust.eu

Twitter @5G_Stardust

5G-STARDUST project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101096573.