

Al for Non-Terrestrial Networks

Bruno De Filippo, PhD student – bruno.defilippo2@unibo.it Riccardo Campana, PhD student – riccardo.campana7@unibo.it

Digicomm Research group Electrical, Electronic and Information Engineering Department (DEI) University of Bologna

Introduction

- Non-Terrestrial Networks are gaining broad interest
 - Standardization, Industry, Researchers, End users
- Artificial Intelligence has reached an all-time high popularity
 - Advances in hardware, models, availability
 - Applications to countless fields

Perfect timeliness for AI-based NTNs!

- Basics for the development of Neural Networks to support NTNs
 - Theoretical
 - Practical (Python: Keras, TensorFlow)

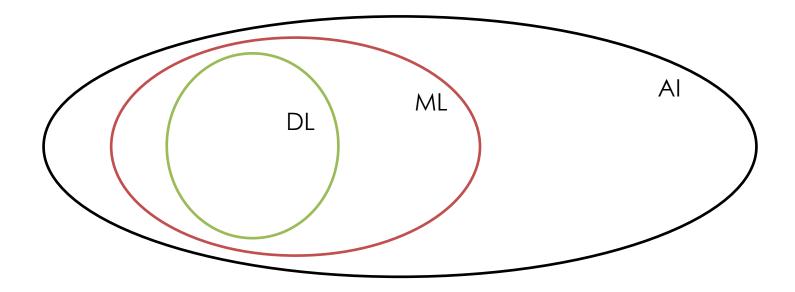
Outline

- A Primer on Artificial Intelligence
- Al in Telecommunications: From Literature to Standardization
- Non-Terrestrial Networks: Challenges and Impairments
- Use Case 1: Al-based Demodulator for Sparse Code Multiple Access
- Use Case 2: Al-based Channel Prediction
- The Way Forward for AI in NTN
- Q&A

A Primer on Artificial Intelligence

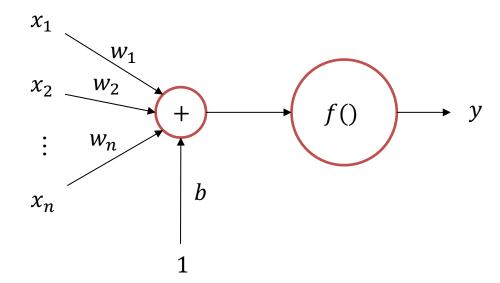
Artificial Intelligence: what it is, what it is not

- Artificial Intelligence: mimic human intelligence
 - General-purpose AI vs Specialized AI
- Machine Learning: develop AI by automatically learning from data
 - Decision Trees (classification), K-Means (clustering), ...
- Deep Learning: usage of Neural Networks as ML algorithms



The Perceptron: the fundamental unit of Neural Networks

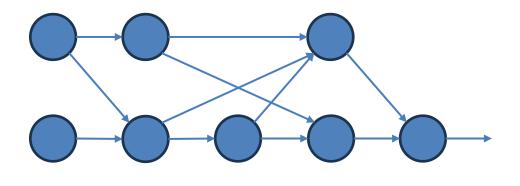
- Inspiration from behavior seen in biological neurons
- Three main operations:
 - Weighted sum of an input vector
 - Sum of weighted bias
 - Activation function (typically non-linear)
- The perceptron is a ML algorithm!
 - Classifier with sigmoid activation function
 - Linear regressor with linear activation function

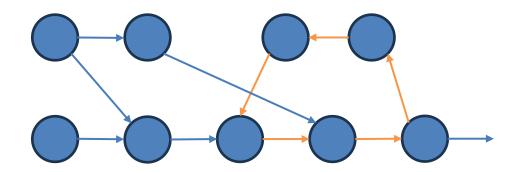


$$y = f(x \cdot w + b)$$

From the Perceptron to Neural Networks

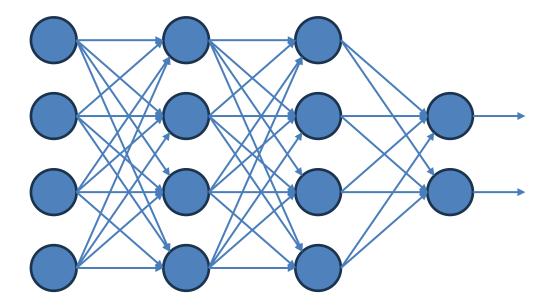
- The outputs of multiple Perceptrons can be used as input to another Perceptron
- Feedforward NNs process the input data in only one direction – input to output
 - Fully-Connected NNs
 - Convolutional NNs
 - **–** ...
- Recurrent NNs allow cycles and feedback loops inside the network
 - Gated Recurrent Units
 - Long Short-Term Memory
 - ...





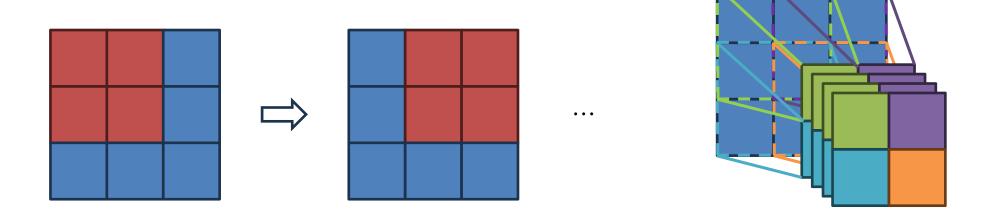
Fully-connected Neural Networks

- Multiple Perceptrons are deployed in **dense** layers
- Each Perceptron in layer i takes as input the output of **every** Perceptron in layer i-1
- If properly designed and trained, a FC NN can approximate the data distribution



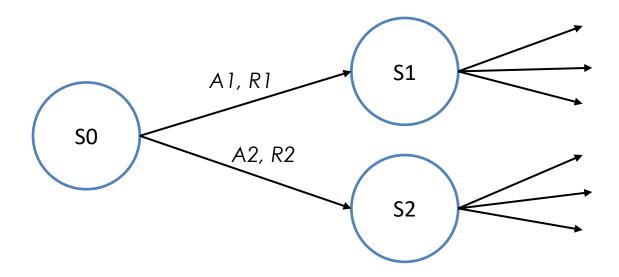
Convolutional Neural Networks

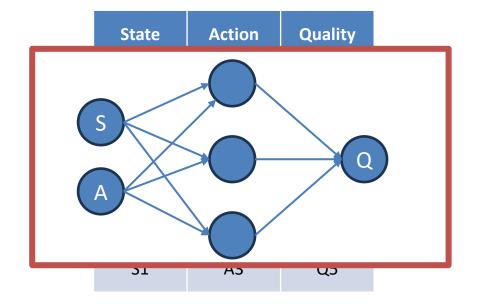
- Use of **convolutional** layers to extract spatial features
- Each Perceptron in layer i takes as input the output of a specific subset of Perceptrons in layer i-1
- Each filter act as a perceptron that process the entire input space by sliding over it



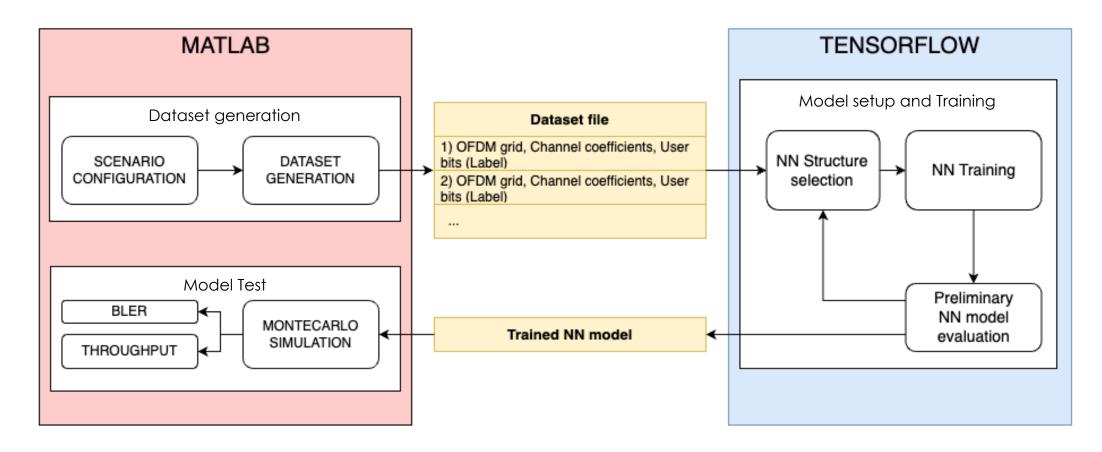
Deep Reinforcement Learning

- **RL**: Learn how to behave in an environment
 - Analyze the current state
 - Take an action (move to new state)
 - Earn a reward
- **Deep** RL: choose the action with a NN



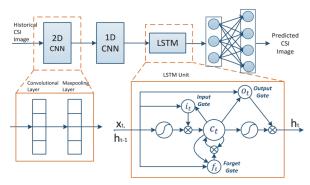


Deep Learning: Typical Workflow



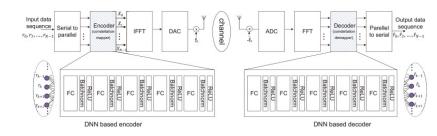
Al in Telecommunications: From Literature to Standardization

Al in the Telecommunications Literature: examples



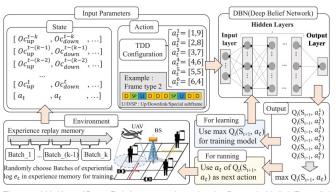
C. Luo, J. Ji, Q. Wang, X. Chen and P. Li, "Channel State Information Prediction for 5G Wireless Communications: A Deep Learning Approach," in *IEEE Transactions on Network Science and Engineering*, vol. 7, no. 1, pp. 227-236, 1 Jan.-March 2020

Channel prediction



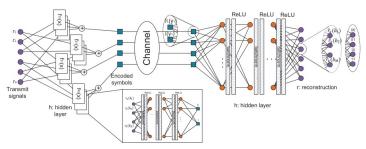
M. Kim, W. Lee and D. -H. Cho, "A Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning," in *IEEE Communications Letters*, vol. 22, no. 3, pp. 510-513, March 2018

PAPR reduction in OFDM



F. Tang, Y. Zhou and N. Kato, "Deep Reinforcement Learning for Dynamic Uplink/Downlink Resource Allocation in High Mobility 5G HetNet," in *IEEE Journal on Selected Areas in Communications*, vol. 38, no. 12, pp. 2773-2782, Dec. 2020

Resource allocation



M. Kim, N. -I. Kim, W. Lee and D. -H. Cho, "Deep Learning-Aided SCMA," in *IEEE Communications Letters*, vol. 22, no. 4, pp. 720-723, April 2018

Generation of optimized modulations

AI in 3GPP

- Study on Al-based **NG-RAN** in **Rel-17** (TR 37.817)
 - New study in Rel-18 on Al for Network Energy Savings, Load Balancing, Mobility Optimizations
- Study on Al-based NR Air Interface in Rel-18 (TR 38.843, draft)
 - Channel State Information
 - Frequency-domain compression
 - Time-domain prediction
 - Possibly with interplay between UE and gNB (e.g., with AutoEncoders)
 - Beam Management
 - Spatial and temporal prediction
 - Positioning
 - Al-based (e.g., fingerprinting) or Al-aided (e.g., measurement enhancement)

Al in Open RAN (1/2)

It is based on the concepts of:

- Disaggregation
- Virtualization
- Open Interfaces
- RAN Intelligent Controllers (RIC)

02 Non-real-time RIC A1 01 O-RAN Interfaces **3GPP Interfaces** Near-real-time RIC E2 Х2-с, Хn-с, 🍳 NG-c CU-CP X2-u, Xn-u, CU-UP NG-u F1-c F1-u DU Open FH RU O-Cloud

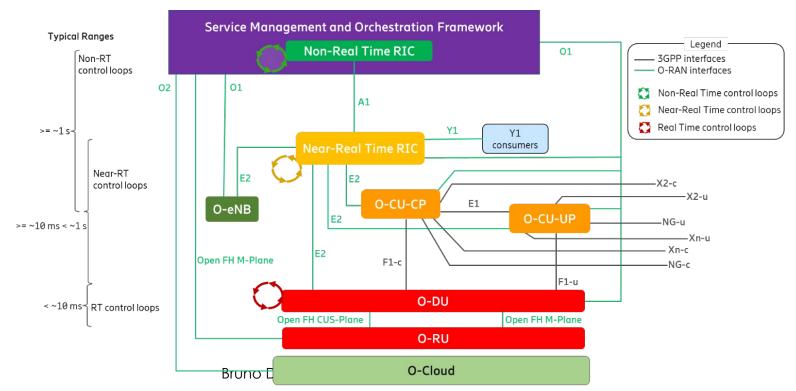
M. Polese et al., "Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges," Aug. 2022, arXiv:2202.01032

Artificial intelligence enablers

Al in Open RAN (2/2)

The O-RAN based NTN architecture enables:

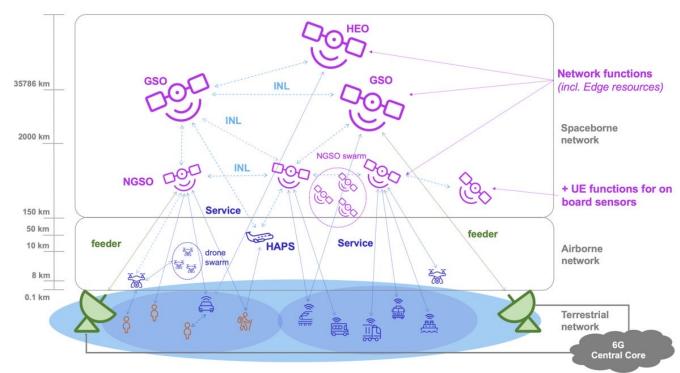
- The collection of KPIs from the network nodes (E2 and O1) through the open interfaces;
- The exploitation of the collected data to train the AI/ML models in the RICs;
- The exploitation of the input KPI data and trained AI/ML models to optimize the RAN configuration parameters.



Non-Terrestrial Networks: Challenges and Impairments

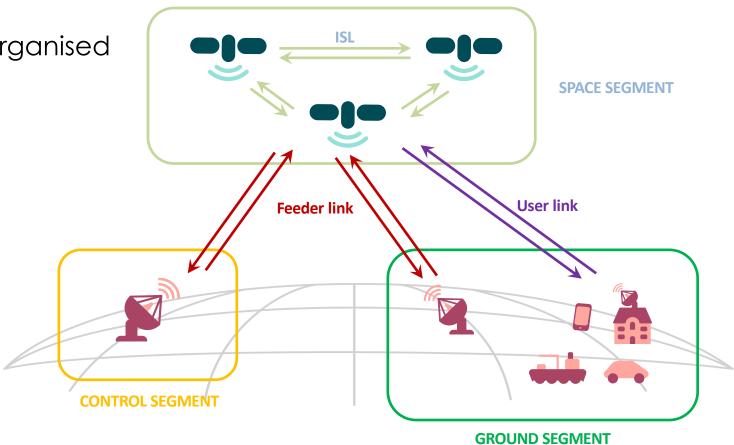
NTN architecture

- Non-terrestrial segment
 - A communication system encompassing flying communication elements
- The flying communication elements can be
 - Air-borne platforms
 - Space-borne platforms



Satellite communications systems

- Space segment
 - 1+ communication satellites organised in a constellation
- Control segment
 - Network Control Center
 - Satellite Control Center
- Ground segment
 - Gateways
 - User Terminals



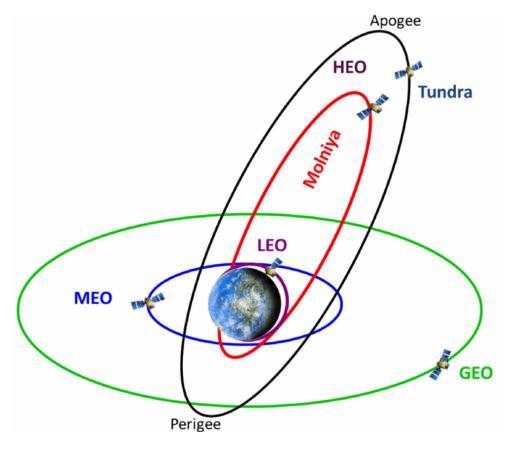
Satellite orbits

Geo-Synchronous Orbit (GSO)

- Period equal to one sidereal day
- Geostationary Earth Orbit (GEO): GSO on the equatorial plane
 - The satellite appears as a fixed point in the sky
 - altitude ~36000 km

Non-GSO (NGSO)

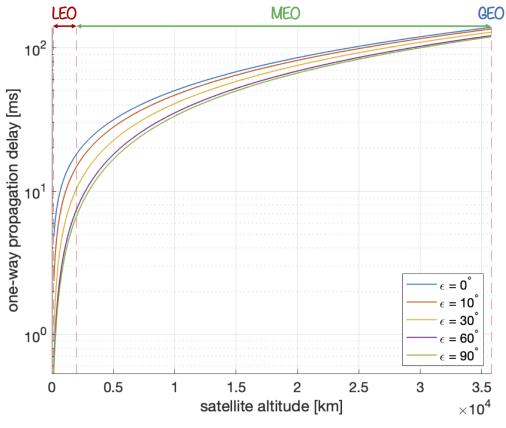
- Medium Earth Orbit (MEO)
 - Typically around 20000 km
- Low Earth Orbit (LEO)
 - 600-1200 km
- vLEO
 - < 500 km



Source: S. Plass et al., "Current Situation and Future Innovations in Arctic Communications," IEEE VTC Fall 2015, Sep. 2015

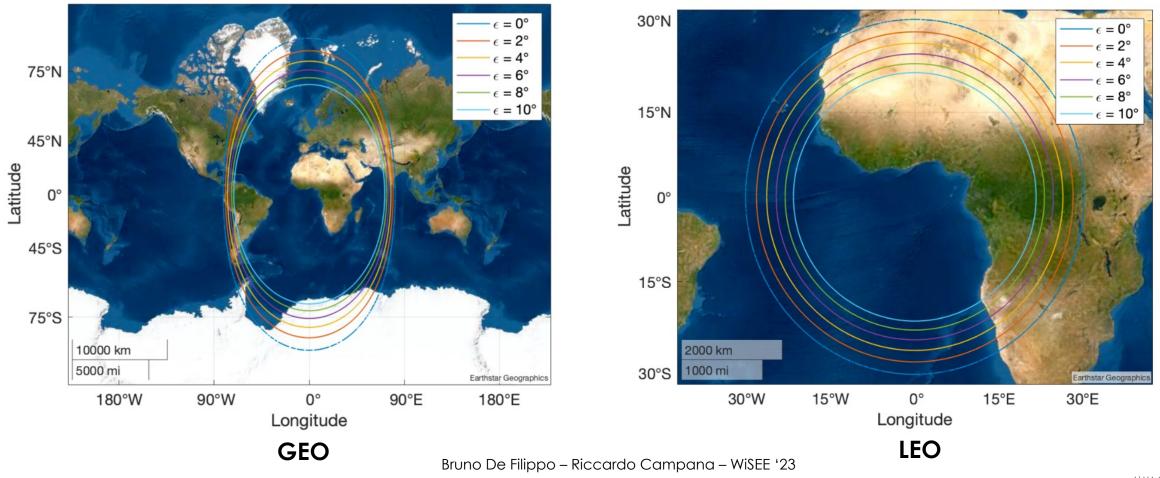
Satellite orbits impact: Latency

Latency sensibly increases when selecting higher altitude orbits



Bruno De Filippo – Riccardo Campana – WiSEE '23

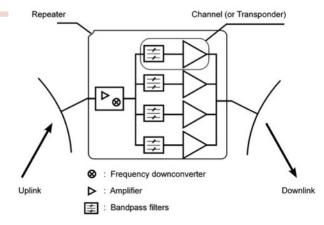
Satellite orbits impact: Field of view



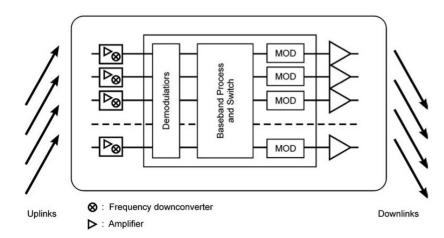
Main satellite components

A communication satellite consists of

- Platform: the subsystem permitting the satellite to operate
- Payload: antennas and Tx/Rx equipment
 - Transparent Tx/Rx: frequency conversion and amplification
 - Regenerative Tx/Rx: demodulation and modulation, protocol termination



Transparent



Regenerative

3GPP NTN Scenarios identified in TR 38.821

The targeted macro-scenarios are

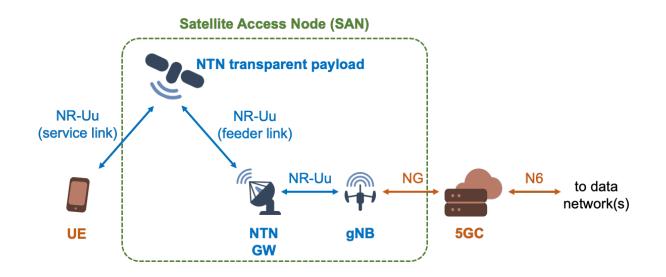
- GEO with transparent payload (A)
- LEO with transparent payload and fixed/moving beams (C1/C2)
- LEO willing generative payload and fixed/moving beams (D1/D2)

All of the above scenarios can be implemented by means of

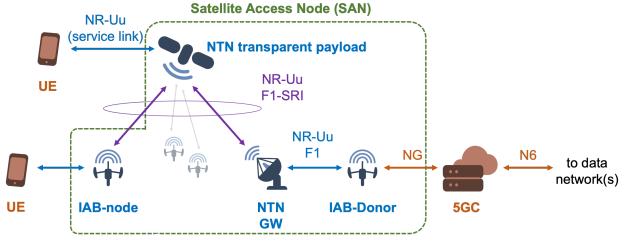
- Direct access (with/without functional split for regenerative payloads)
- Relay Nodes (RNs) or Integrated Access Backhaul (IAB) Nodes

	Transparent satellite	Regenerative satellite
GEO based non-terrestrial access network	Scenario A	Scenario B
LEO based non-terrestrial access network: steerable beams	Scenario C1	Scenario D1
LEO based non-terrestrial access network: the beams move with the satellite	Scenario C2	Scenario D2
	w/o ISL	w/ ISL

Transparent payload reference architecture

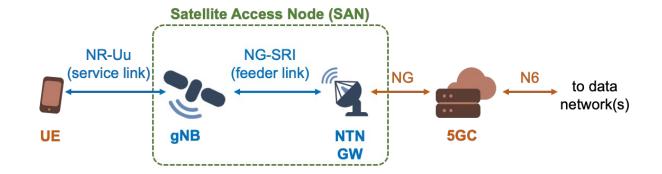


Direct Access

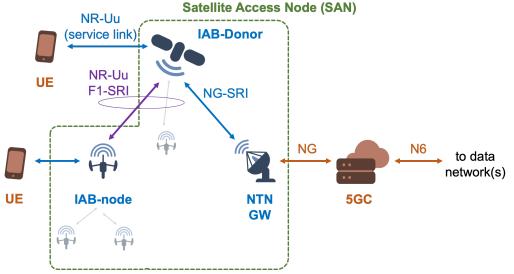


Indirect IAB Access

Regenerative payload reference architecture (no functional split)

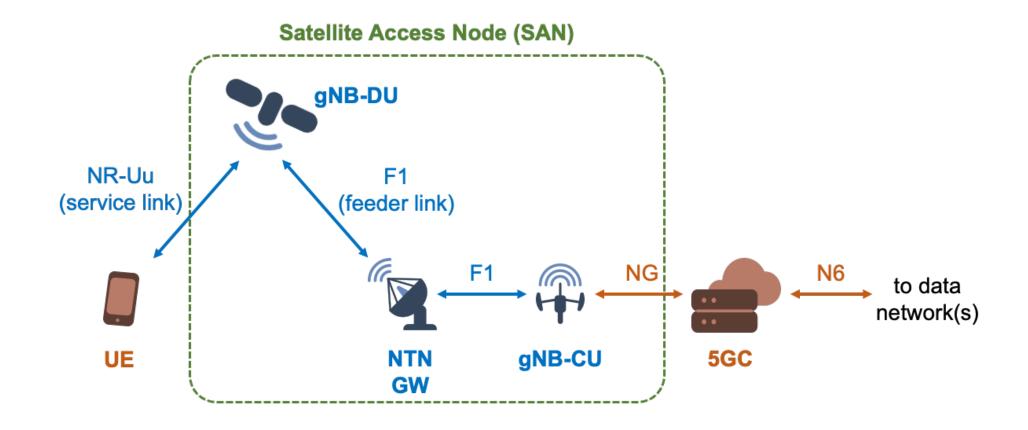


Direct Access



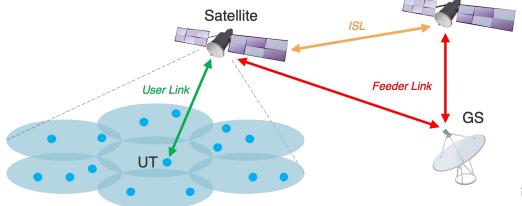
Indirect IAB Access

Regenerative payload reference architecture (with functional split)

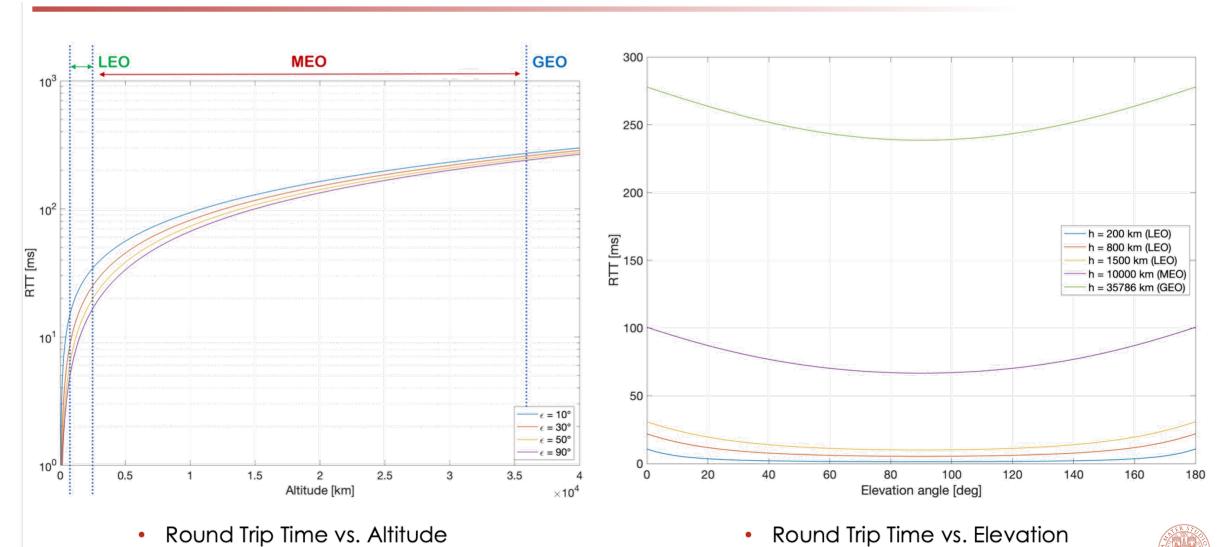


Typical Impairments in NTN: Delay

- Different types of delay are involved in SatCom:
 - the propagation delay along the user link
 - the propagation delay along the feeder link
 - the propagation delay along the ISL (if present)
- The propagation delay, directly related to the slant range, is the predominant one and its value is much larger than those of terrestrial networks.
- Larger the footprint | Higher the orbit | Smaller the elevation angle ⇒ Larger the
 RTT
- This could result in bottlenecks with harmful impacts on the protocols and procedures of the air interface implemented



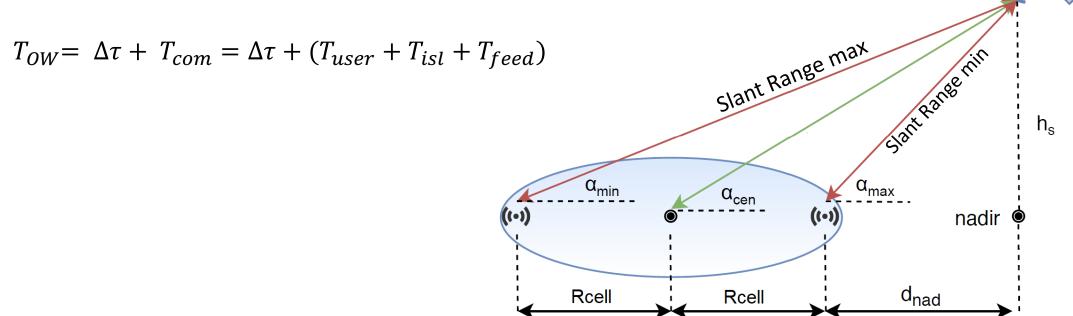
Typical Impairments in NTN: Delay



Bruno De Filippo – Riccardo Campana – WiSEE '23

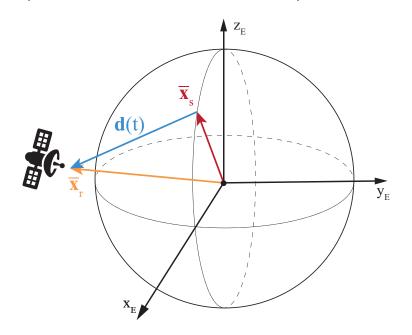
Typical Impairments in NTN: Differential Delay

- Differential delay is the difference among the propagation delay experienced by two different UTs in the access area of the same satellite.
- For two or more UTs in the same beam, it is possible to split their one-way propagation delay, into two distinct components:



Typical Impairments in NTN: Doppler shift

- The Doppler shift consists in the change in the carrier frequency due to the relative motion between the satellite and the user terminal.
- When UTs mobility and LEO and VLEO satellite systems are considered, the Doppler shift can introduce significant frequency shifts with respect to those expected in terrestrial systems.



$$f_D(t) = -\left(\frac{\mathbf{d}(t)}{|\mathbf{d}(t)|} \cdot \frac{\partial \mathbf{x}_r}{\partial t} - \frac{\mathbf{d}(t)}{|\mathbf{d}(t)|} \cdot \frac{\partial \mathbf{x}_s}{\partial t}\right) \frac{f_0}{c}$$
$$= \frac{-(v_r(t) - v_s(t))}{c} f_0 = \frac{\Delta v}{c} f_0$$

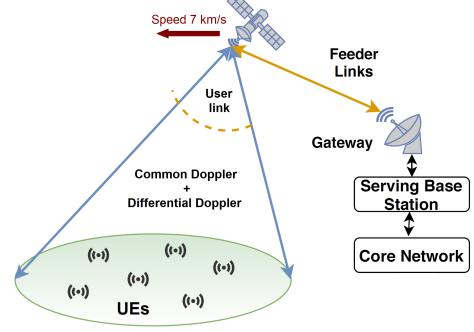
approximated form as a function of the elevation angle

$$f_D(\varepsilon_i) = f_0 \frac{\omega_s R_E \cos(\varepsilon_i)}{c}$$

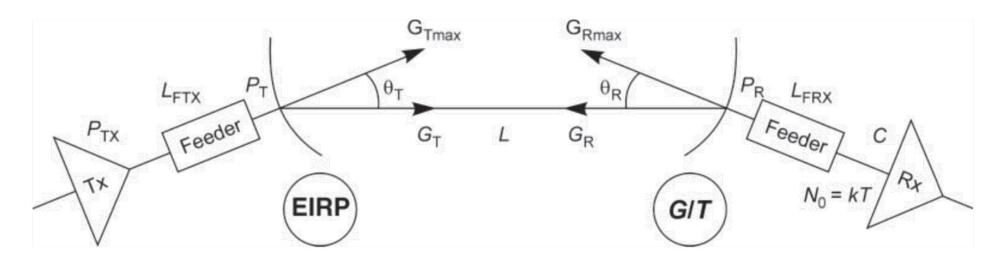
Typical Impairments in NTN: Differential Doppler shift

- The differential Doppler shift is the difference among the Doppler shift experienced by two different UTs in the access are of the same satellite.
- For two or more UTs in the same beam, it is possible to split their Doppler shift, f_D(t), previously defined, into two distinct components:

$$f_D(t) = \Delta f_D(t) + f_D^{com}(t)$$

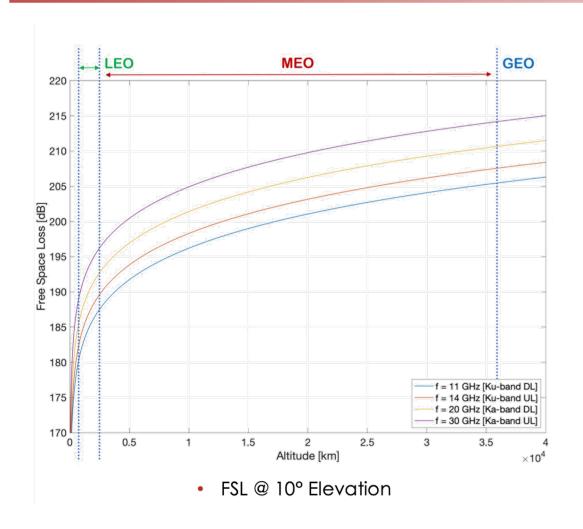


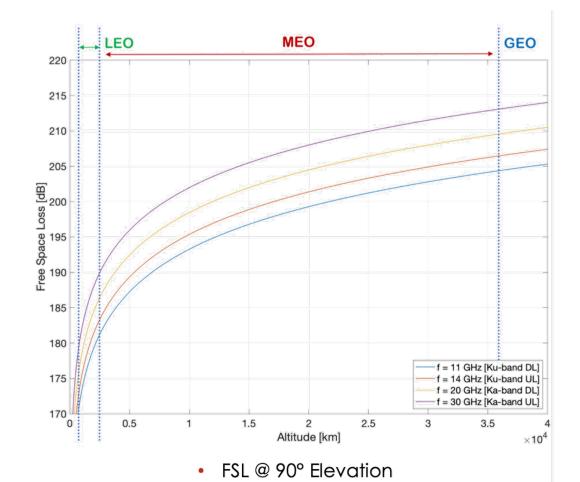
Typical Impairments in NTN: Link budget



Link configuration

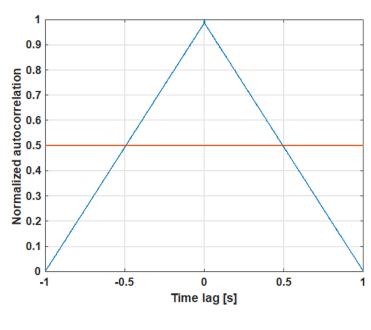
Typical Impairments in NTN: Link budget



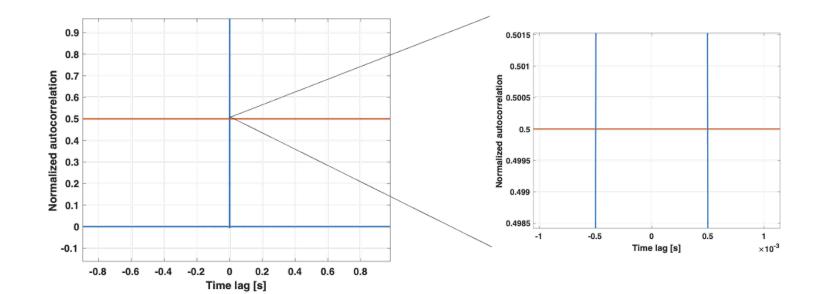


Typical Impairments in NTN: Fast-varying Channel

Autocorrelation of the channel coefficients



Amplitude

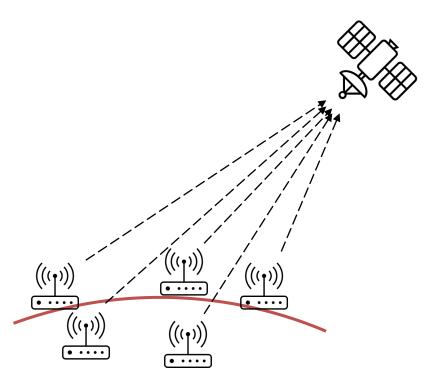


Phase

Case Study 1 Al-based Demodulator for Sparse Code Multiple Access

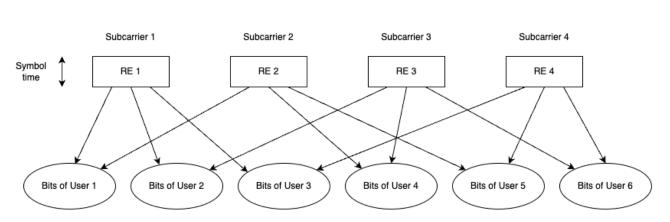
Overview and objective

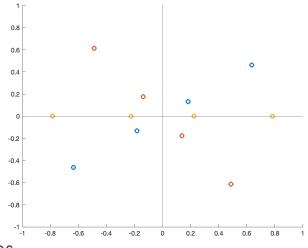
- Massive radio access expected from IoT devices
- NTNs: large coverage areas, short visibility window
- Non-Orthogonal Multiple Access techniques should be investigated!
- IoT User Equipments (UEs) are required to be low-power
- Objective: Introduce a NN at the receiver to improve demodulation, achieving satisfactory performance at a lower SNR



Sparse Code Multiple Access

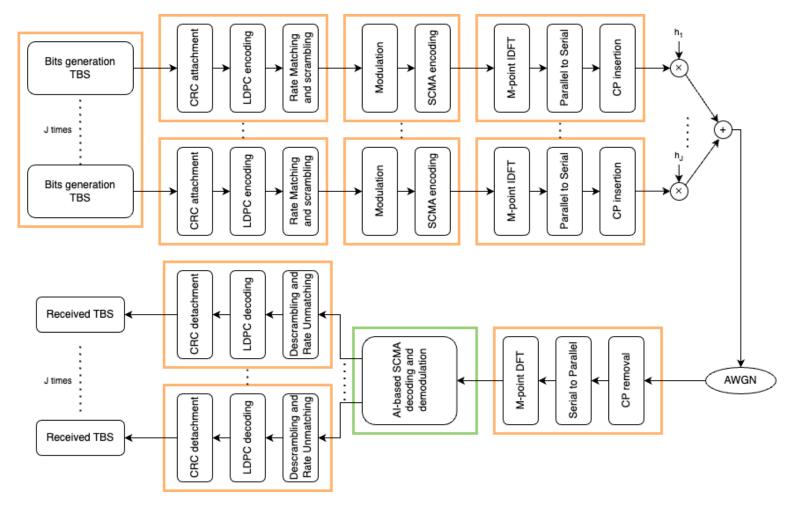
- SCMA: allow limited and controlled overlapping in frequency
 - Mapping between Resource Elements (REs) and UEs
 - Mapping between user bits and SCMA codewords (codebook)
- Each UE encodes 2 bits in a SCMA codeword
 - Two phase-shifted 4-ASK symbols, one on each RE
 - Phase shift is codebook-dependent
- Demodulator: Message-Passing Algorithm (MPA)
 - Iterative procedure (Log-MPA)
 - Exploit redundancy and phase shifts to separate non-orthogonal transmissions



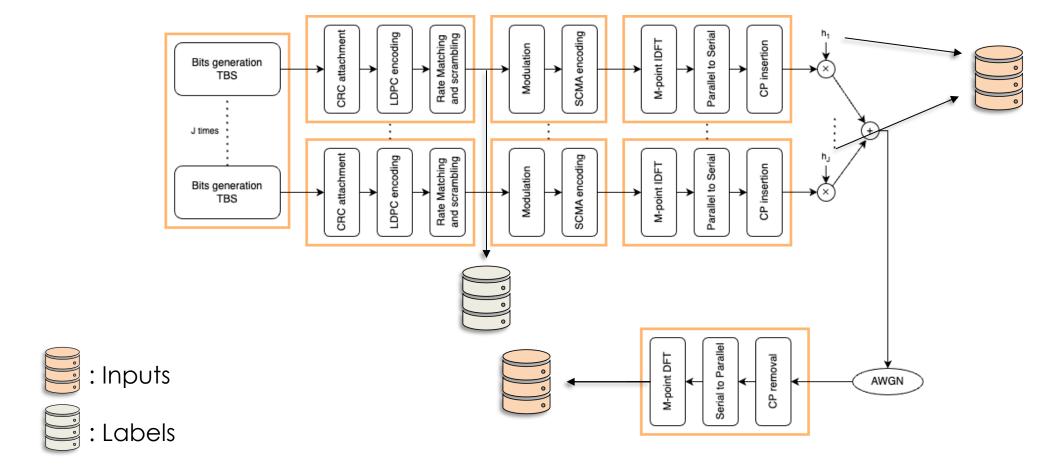


150% overload

Simulator overview

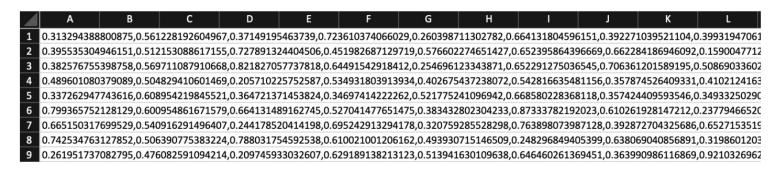


Dataset generation

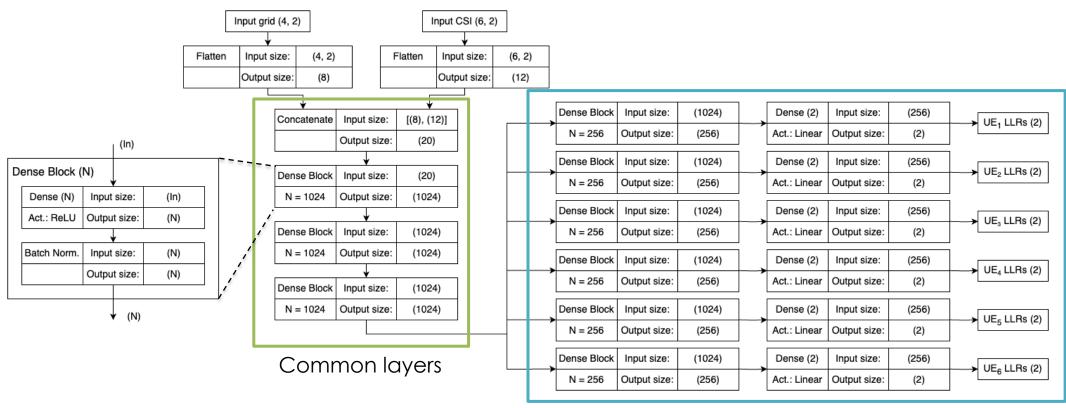


Dataset characteristics

- Entire dataset split into multiple files
 - Handle large datasets that would not fit in RAM
- Each row contains a transmission example: inputs (OFDM grid, channel coefficients) and labels
 - Complex values are split into real and imaginary parts
 - All values are normalized to improve the training process
 - Different SNR levels are considered
- Labels are bits, not LLRs!
 - Avoid learning to reproduce the traditional algorithm's output
 - The loss function will process the NN output to produce hard bits before comparing them with labels



Neural Network overview



UE-specific layers

Dataset import (1/5)

```
def tf_data_generator(file_list, batch_size = 5):
    i = 0
    while True:
        if i*batch_size >= len(file_list):
           i = 0
           np.random.shuffle(file_list)
        else:
            file_chunk = file_list[i*batch_size:(i+1)*batch_size]
            data = []
           labels = []
            for file in file_chunk:
                temp = np.asarray(pd.read_csv(open(file,'r')))
                data.append(temp[:, :input_length])
                labels.append(temp[:, label_length:])
            data = np.asarray(data).reshape((-1, input_length))
            labels = np.asarray(labels).reshape((-1, label_length))
           yield data, labels
            i = i + 1
```

- Dataset is often too large to fit in RAM
- Generators can be used to yield data batch by batch

Dataset import (2/5)

```
def tf_data_generator(file_list, batch_size = 5):
   i = 0
   while True:
       if i*batch_size >= len(file_list):
           i = 0
           np.random.shuffle(file_list)
       else:
            file_chunk = file_list[i*batch_size:(i+1)*batch_size]
           data = []
           labels = []
           for file in file_chunk:
               temp = np.asarray(pd.read_csv(open(file,'r')))
               data.append(temp[:, :input_length])
               labels.append(temp[:, label_length:])
           data = np.asarray(data).reshape((-1, input_length))
           labels = np.asarray(labels).reshape((-1, label_length))
           yield data, labels
```

 Shuffle the files list every time the entire dataset has been yielded

Dataset import (3/5)

```
def tf_data_generator(file_list, batch_size = 5):
   while True:
       if i*batch_size >= len(file_list):
           np.random.shuffle(file_list)
       else:
            file_chunk = file_list[i*batch_size:(i+1)*batch_size]
           data = []
           labels = []
            for file in file_chunk:
                temp = np.asarray(pd.read_csv(open(file,'r')))
                data.append(temp[:, :input_length])
                labels.append(temp[:, label_length:])
            data = np.asarray(data).reshape((-1, input_length))
           labels = np.asarray(labels).reshape((-1, label_length))
           yield data, labels
           i = i + 1
```

- Select a batch of files
- Read each file
- Append the input data and the labels contained in each row to the corresponding lists
- Return the batch using yield to continue with the next batch

Dataset import (4/5)

```
files_list = []
main_dir = "Dataset";
for path, subdirs, files in os.walk(main_dir):
    for name in files:
        files_list.append(os.path.join(path, name))
files_list_train, files_list_val = train_test_split(files_list, test_size = 0.2, random_state = 5)
train_dataset = tf.data.Dataset.from_generator(tf_data_generator,
                                               args = [files_list_train, batch_size],
                                               output_types = (tf.float32, tf.float32),
                                               output_shapes = ((None, input_length), (None, output_length)))
val_dataset = tf.data.Dataset.from_generator(tf_data_generator,
                                             args = [files_list_val, batch_size],
                                             output_types = (tf.float32, tf.float32),
                                             output_shapes = ((None, input_length), (None, output_length)))
```

Dataset import (5/5)

```
files_list = []
main_dir = "Dataset";
for path, subdirs, files in os.walk(main_dir):
   for name in files:
        files_list.append(os.path.join(path, name))
files_list_train, files_list_val = train_test_split(files_list, test_size = 0.2, random_state = 5)
train_dataset = tf.data.Dataset.from_generator(tf_data_generator,
                                               args = [files_list_train, batch_size],
                                               output_types = (tf.float32, tf.float32),
                                               output_shapes = ((None, input_length), (None, output_length)))
val_dataset = tf.data.Dataset.from_generator(tf_data_generator,
                                             args = [files_list_val, batch_size],
                                             output_types = (tf.float32, tf.float32),
                                             output_shapes = ((None, input_length), (None, output_length)))
```

Fully-Connected Model (1/3)

```
input_shape = (input_length,)

# Input layers
fc_input = Input(shape = input_shape, name = 'Input_concat')

# Fully-Connected Layers (common grid processing)
x = Dense(size_common_fc, activation = 'relu', name = 'Common_Dense_1')(fc_input)
x = BatchNormalization(name = 'Common_BN_1')(x)
x = Dense(size_common_fc, activation = 'relu', name = 'Common_Dense_2')(x)
x = BatchNormalization(name = 'Common_BN_2')(x)
x = Dense(size_common_fc, activation = 'relu', name = 'Common_Dense_3')(x)
x = BatchNormalization(name = 'Common_BN_3')(x)
```

- Input layer collects input data from the batch
- Dense layer is a FC layer
- BatchNormalization layer standardizes the batch to zero mean and unit variance
 - Helps the learning process
- Each layer is connected to the previous, jointly processing the grid

Fully-Connected Model (2/3)

```
# Fully-Connected Layers (UE 1)
out_1 = Dense(size_UE_fc, activation = 'relu', name = 'UE1_Dense_1')(x)
out_1 = BatchNormalization(name = 'UE1_BN_1')(out_1)
out_1_final = Dense(2, activation = 'linear', name = 'UE1_Dense_2')(out_1)

# Fully-Connected Layers (UE 2)
out_2 = Dense(size_UE_fc, activation = 'relu', name = 'UE2_Dense_1')(x)
out_2 = BatchNormalization(name = 'UE2_BN_1')(out_2)
out_2_final = Dense(2, activation = 'linear', name = 'UE2_Dense_2')(out_2)

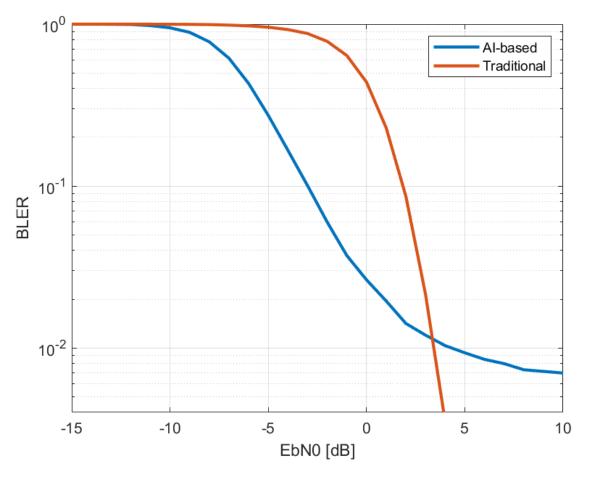
# Fully-Connected Layers (UE 3)
out_3 = Dense(size_UE_fc, activation = 'relu', name = 'UE3_Dense_1')(x)
out_3 = BatchNormalization(name = 'UE3_BN_1')(out_3)
out_3_final = Dense(2, activation = 'linear', name = 'UE3_Dense_2')(out_3)
```

- Separate processing for each UE on the processed grid
 - Adapt each branch to the corresponding UE's codebook
- Smaller size (size_UE_fc = 256) to move closer to the output size (2 bits per UE)
- Linear activation to output LLRs
 - To be fed to a decoder
- NN output is the concatenation of the output LLRs

```
# Output concatenation
out_concat = Concatenate(axis = 1, name = 'Concatenate_outputs')([out_1_final, out_2_final, out_3_final, out_4_final, out_5_final, out_6_final])
# Model generation
model = Model(fc_input, out_concat)
model.summary()
```


Fully-Connected Model (3/3)

Results - Block Error Rate

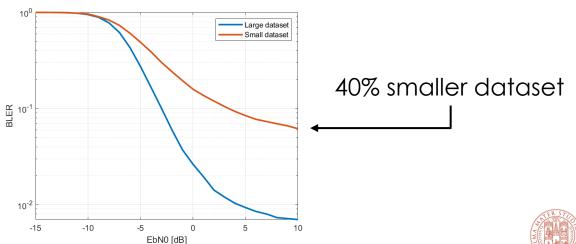


• Better noise handling with Al

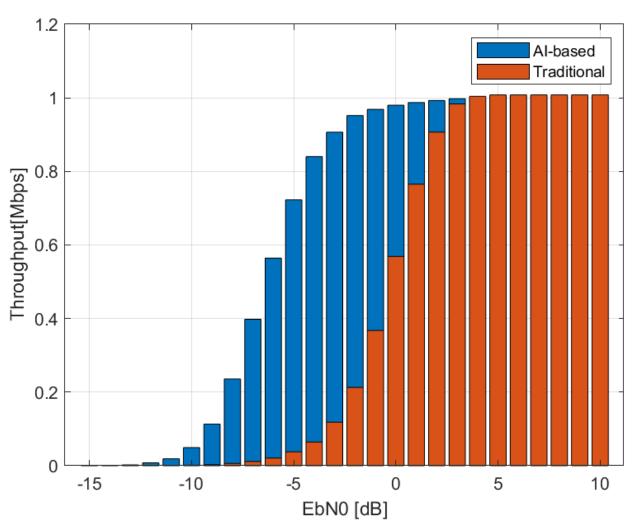
- 10% BLER at Eb/N0 = -3dB (AI) vs 2 dB (traditional)
- 1% BLER at Eb/N0 = 4.5 dB (AI) vs 4 dB (traditional)

• Error floor over 1E-3

 Suggests that non-orthogonality has not entirely been mitigated



Results – Theoretical Throughput



- Higher throughput at low Eb/N0 with Al
 - 900kbps at Eb/N0 = -3dB (AI) vs 2 dB (traditional)
 - 1Mbps at Eb/N0 = 4 dB (Al and traditional)
- The BLER error floor is low enough to reach the 1Mbps peak throughput
- Al-based demodulator may reach the peak throughput at a lower Eb/N0 with further training

Complexity Analysis

Operation	Al-based	Traditional
Addition	3'702'796	34'840
Multiplication	3'702'796	9'456
Exponential	0	7'680
Maximum	4608	8'640

- Exponential function's complexity cannot be easily assessed
- Al-based mainly performs optimized matricial operations
- What is the impact on demodulation time?

With an off-the-shelves 12 cores CPU:

• Al-based: 3.05 ms

• Traditional: 0.89 ms

0.10 – 0.15 ms with GPU acceleration

Case Study 2 Al-based Channel Prediction

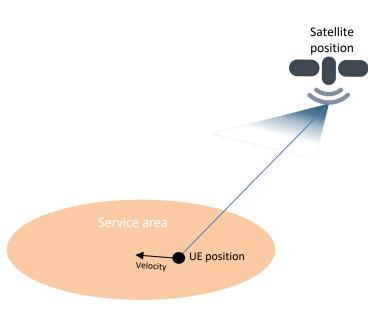
Overview and objective

Objective:

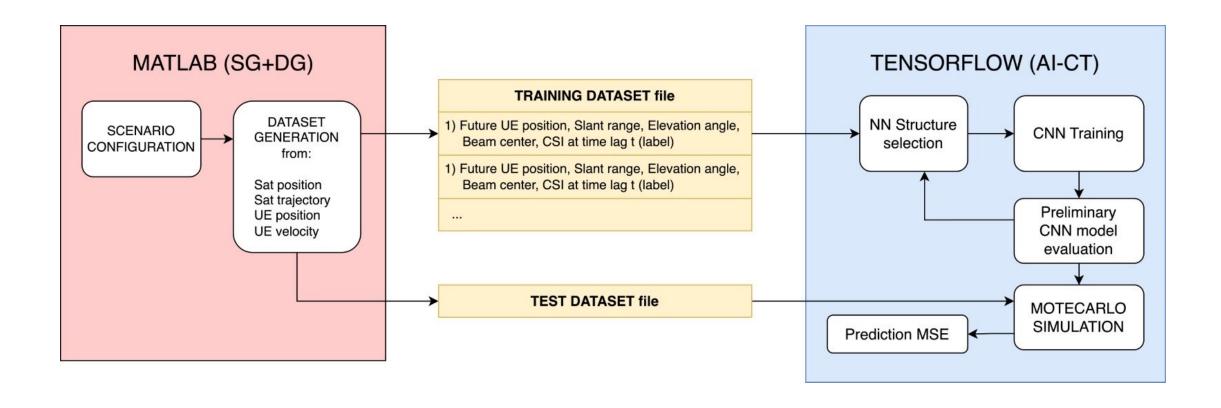
- Predict the future CSI of a specific UE in the coverage area
- Exploiting historical data about UEs CSI (training)
- Based on relative position and speed of UE and satellite (input)

Assumptions:

- NN implemented in the BS on-board
- UEs are moving (pedestrian, veicular, train)
- UEs provide their position to the BS
- NN trained with synthetic dataset



Simulator flowchart



Dataset generation

The dataset is generated in MATLAB following these steps:

- The UEs are deployed randomly in the coverage area.
- A random movement direction and velocity class is assigned to each UE.
- The trajectory of the satellite is computed.
- At each loop iteration:
 - The CSI of every UE is computed according to the desired channel model.
 - Each CSI value is saved in different row of the dataset file together with satellite position and UE position and velocity.
 - The position of each UE is updated according to its velocity.
 - The position of the satellite is updated according to its trajectory.

UE lat	UE lon	UE vel x	UE vel y	Sat ephemeris	CSI Real	CSI Imaginary
--------	--------	----------	----------	---------------	----------	---------------

Dataset generation

Datasets generated with the following assumptions:

- LEO at 600 km (Set 2) with a single fixed beam
- UL transmission in S band
- Sub-urban environment in LOS
- One CSI example every 1ms

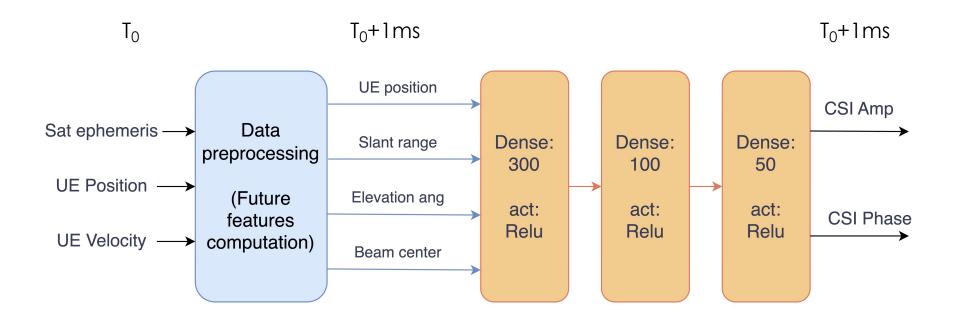
Training dataset considering:

• UE density set to 1 UE/Km2 Generating 400M examples

Test dataset considering:

UE density set to 0.1 UE/Km2
 Generating 20M examples

NN Architecture



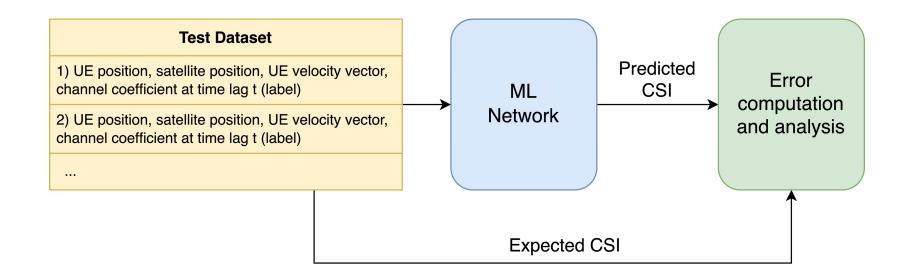
Parameter	Values
valid_split	0.3
learning_rate	0.001
N_epochs	10
batch_size	100
shuffle_seed	43
loss	mean_squared_error
output_metric	MSE

Loss function: Mean Square Error between future CSI (label) and predicted CSI

ML network testing phase (1/3)

To assess the performances of the trained ML network:

- A new dataset is fed to the network
- The network output is compared to the expected output
- A statistical evaluation of the network errors is performed.



ML network testing phase (2/3)

```
" Select the path to the test dataset "
urltest = './CSI_dataset_E0600_set1_S_0tier_fixed_5ms/LE0600_set2_S_0tier_moving_4.170000e-03ms.csv'
" Import of the dataset used to test the network "
npDataTest = csvr.input_csv_filter_t(urltest)

" Generate the training and validation dataset from the input numpy data "
test_dataset, _, _, _, _, _, value_labels = creData.input_data_to_dataset_t(npDataTest)
test_dataset = test_dataset.batch(batch_size)

" Import the previously saved AI model "
model = keras.models.load_model('CSI_AI_model')

" Input the test dataset to the AI model and obtain the output prediction "
labels_predict = model.predict(test_dataset, 1)
```

Data import

Model import

Model use

ML network testing phase (3/3)

Example of error computation

```
" Otput metrics computation and print "
if output_metric == 'MSE':
    CSI_prediction_MSE = mean_squared_error(labels_predict[:, 0, 0], value_labels[:, 0])
    print("MSE:%.4f" % CSI_prediction_MSE)
elif output_metric == 'MAE':
    CSI_prediction_MAE = mean_absolute_error(labels_predict[:, 0, 0], value_labels[:, 0])
    print("MAE:%.4f" % CSI_prediction_MAE)
elif output_metric == 'MAPE':
    CSI_prediction_MAPE = mean_absolute_percentage_error(labels_predict[:, 0, 0], value_labels[:, 0])
    print("MAPE:%.4f" % CSI_prediction_MAPE)
```


Results: MSE

- MSE of the amplitude of the complex CSIs
- MSE of the phase of the complex CSIs
- Aggregated MSE of amplitude and phase

$MSE = \frac{1}{n} \sum_{i=1}^{n} (CSI_i - \widehat{CSI}_i)^2$
--

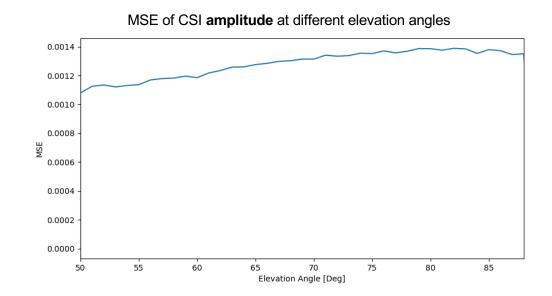
Metric	Value		
Amplitude MSE	0,0012		
Phase MSE	0,0843		
Aggregate MSE	0,0836		

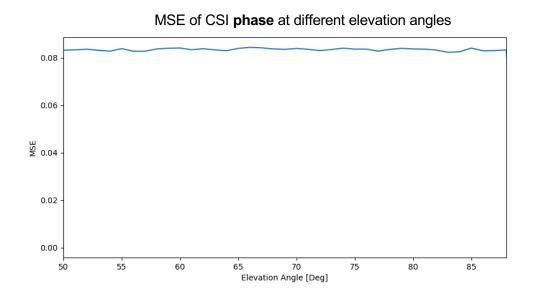
Better performances in the amplitude prediction compared to phase prediction:

- High correlation between amplitude of consecutive examples
- Low correlation between phase of consecutive examples

Results: MSE vs Elevation Angle

Analysis of CSI prediction performance variation along the orbit and inside the beam





- Quite constant CSI prediction performance at different elevation angles
- The NN can be proficiently exploited in extended coverage areas without losing prediction precision

Enabling NOMA NTN through CSI Prediction

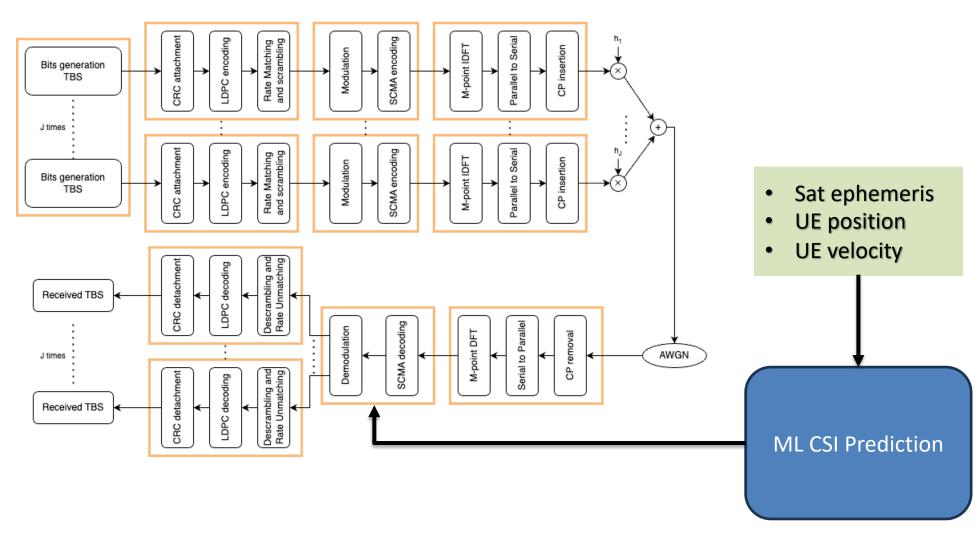
NOMA thechnique: The gNB requires the **knowledge of the CSI at each symbol time**.

Performance of NOMA technique knowing only the CSI of the first symbol of each user:

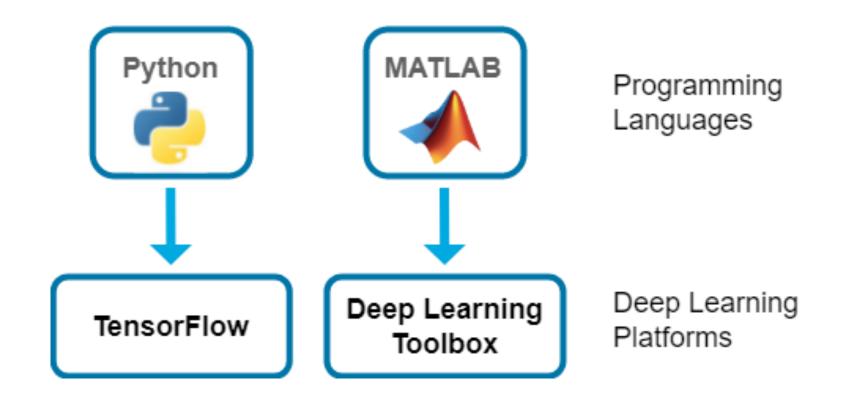
EbN0 [dB]	BLER (SCS = 15 kHz)	BER(SCS = 15 kHz)	BLER (SCS= 240 kHz)	BER(SCS = 240 kHz)
0	0.99	0.4358	0.99	0.2740
2	0.99	0.4256	0.99	0.2649
4	0.99	0.4232	0.99	0.2624
6	0.99	0.4217	0.99	0.2618

CSI prediction technique can enable the correct decoding of NOMA packets.

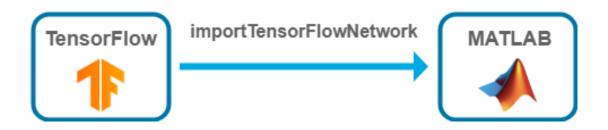
CSI prediction in NOMA SCMA demodulator



TF model exploitation in MATLAB (1/2)



TF model exploitation in MATLAB (2/2)



1) Save the tensorFlow model in the SavedModel format:

```
import tensorflow as tf
   tf.saved_model.save(model.modelFolder)
```

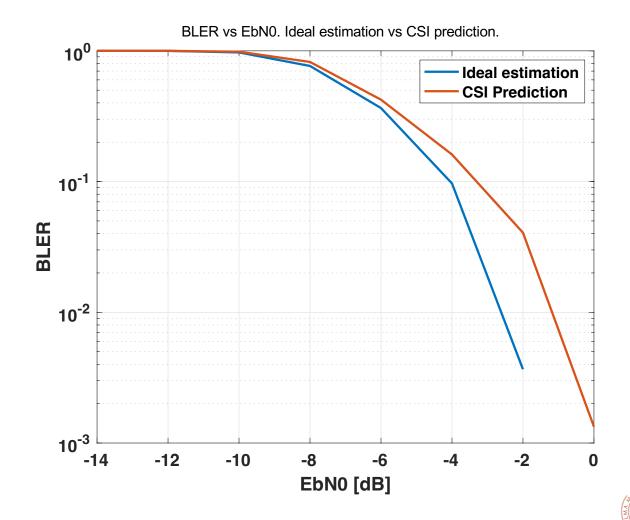
2) Import the TensorFlow model into MATLAB by using the MATLAB function:

```
modelFolder = "CSI_Prediction";
net = importTensorFlowNetwork(modelFolder,OutputLayerType="regression");
```


CSI prediction in NOMA SCMA demodulator

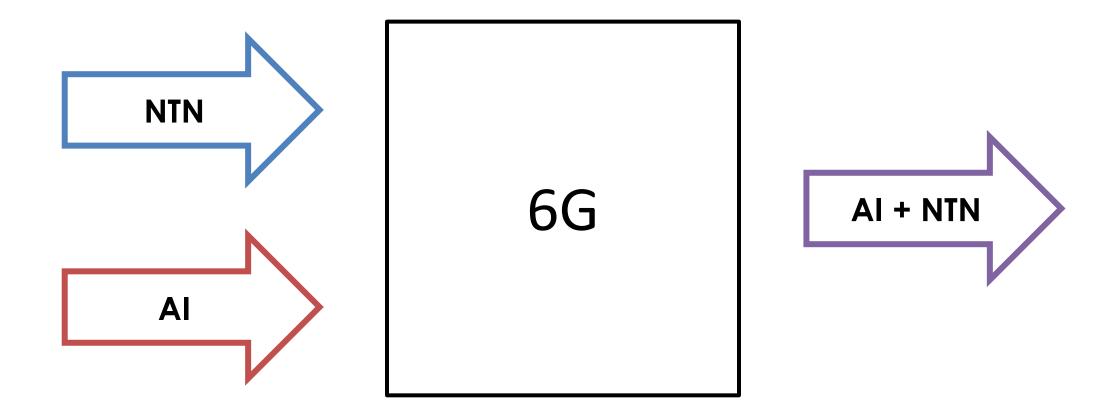
The CSI prediction obtained with the Neural Network allows to reach a **BLER very close** to the one in **ideal conditions**.

This is motivated by the amplitude of the phase error not exceeding the robustness of the SCMA technique



The Way Forward for AI in NTN

The Way Forward for Al in NTN



Challenges for AI in NTN

- Data availability
 - Are synthetic data enough?
- Computational complexity
 - Power, latency
- Model adaptability
 - Multiple specialized models vs one larger model
- Real-world testing
 - Deploy a NN in a network

Current funded projects on NTN

OTTAT COMMEDIANCE

 α

1

om/company/6g-ntn/

<u>ntn</u>

pant N.	Participant organisation name	Acronym	Country
rdinator)	ALMA MATER STUDIOPUM UNIVERSITA DI BOLOGNA	https://WWW.ea	geroroject.eu
	THALES ALENIA SPACE FRANCES SES	TASF	FR
	MARTEL GMBH in	https://www.lin	kedin com/company/eager-project/
	THALES DIS AIS DEUTS HLAND GMBH	https://twilter.c	omPeagersatcom
	GREENERWAVE	GRN	FR
	THALES SIX GTS FRANCE SAS	TH-SIX	FR
	ERICSSON AB	ERIS	SE
	THALES ALENIA SPACE UK LTD	TASUK	UK
	ERICSSON 5G	ERIF	FR
	CENTRE TECNOLOGIC DETELECOMUNICACIONS DE	https://www.5g	<u>-stardust.eu</u>
	CATALUNIA VSTOPUST	CTTC https://www.lin	ES kedin.com/company/5g-stardust/
	DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAH	EV DLR	DE
	ORANGE SA Bruno De Filippo – F	ORA Riccardo Campano	L - KREE 123
	SES TECHCOM SA	SES	LU

Q&A

